系统工程与电子技术 ›› 2025, Vol. 47 ›› Issue (2): 406-417.doi: 10.12305/j.issn.1001-506X.2025.02.08
• 传感器与信号处理 • 上一篇
丁一1, 汪飞1, 陈军2,*, 韩清华3, 周建江1
收稿日期:
2024-01-02
出版日期:
2025-02-25
发布日期:
2025-03-18
通讯作者:
陈军
作者简介:
丁一 (2001—), 男, 硕士研究生, 主要研究方向为雷达信号处理、雷达射频隐身基金资助:
Yi DING1, Fei WANG1, Jun CHEN2,*, Qinghua HAN3, Jianjiang ZHOU1
Received:
2024-01-02
Online:
2025-02-25
Published:
2025-03-18
Contact:
Jun CHEN
摘要:
雷达检测性能与目标回波特性相关, 设计与目标角域起伏特性相匹配的波形频率可以提升目标的检测概率。对此, 提出一种基于启发式频率规划的多雷达波形设计算法。在离线状态下, 通过起伏因子约束下角域划分、起伏因子最大化角域关联和异常角域决策三步设计匹配机动目标特性的角度频率匹配集。在目标跟踪阶段, 通过多站雷达扩展探测频率以优化角域, 并根据机动目标在状态转移区域内的滤波预测状态值完成目标回波不确定条件下的雷达节点和辐射频率参数规划。仿真结果表明, 所提算法在飞机进行匀速直线与协同拐弯交替运动的跟踪场景中检测性能显著提升。
中图分类号:
丁一, 汪飞, 陈军, 韩清华, 周建江. 基于启发式频率规划的多雷达波形设计[J]. 系统工程与电子技术, 2025, 47(2): 406-417.
Yi DING, Fei WANG, Jun CHEN, Qinghua HAN, Jianjiang ZHOU. Multi-radar waveform design based on heuristic frequency programming[J]. Systems Engineering and Electronics, 2025, 47(2): 406-417.
1 | 余若峰, 杨威, 付耀文, 等. 面向不同雷达任务的认知波形优化综述[J]. 电子学报, 2022, 50 (3): 726- 752. |
YU R F , YANG W , FU Y W , et al. A review of cognitive waveform optimization for different radar missions[J]. Acta Electronica, 2022, 50 (3): 726- 752. | |
2 |
冯翔, 李风从, 范羽, 等. 基于粒子采样投影的雷达低旁瓣复合波形设计[J]. 系统工程与电子技术, 2023, 45 (4): 1008- 1015.
doi: 10.12305/j.issn.1001-506X.2023.04.09 |
FENG X , LI F C , FAN Y , et al. Radar low side lobe composite waveform design based on particle sampling projection[J]. Systems Engineering and Electronics, 2023, 45 (4): 1008- 1015.
doi: 10.12305/j.issn.1001-506X.2023.04.09 |
|
3 | XIE Q Y , LIU C Y , MO Z W , et al. A novel pulse-agile waveform design based on random FM waveforms for range sidelobe suppression and range ambiguity mitigation[J]. IEEE Trans.on Geoscience and Remote Sensing, 2023, 61, 5110612. |
4 | ZHOU X , ZHU J H , ZHUANG X , et al. MIMO radar robust waveform-filter design for extended targets based on Lagrangian duality[J]. IEEE Trans.on Aerospace and Electronic Systems, 2023, 59 (2): 1021- 1036. |
5 |
CHENG X , WU L L , CIUONZO D , et al. Joint design of horizontal and vertical polarization waveforms for polarimetric radar via SINR maximization[J]. IEEE Trans.on Aerospace and Electronic Systems, 2023, 59 (3): 3313- 3328.
doi: 10.1109/TAES.2022.3223887 |
6 |
SHI S N , HE Z S , CHENG Z Y . Codesign for hybrid MU-MIMO communication and MIMO radar systems based on mutual information[J]. IEEE Systems Journal, 2023, 17 (1): 1328- 1339.
doi: 10.1109/JSYST.2022.3201773 |
7 |
WANG X Y , TANG B , WU W J , et al. Relative entropy-based waveform optimization for rician target detection with dual-function radar communication systems[J]. IEEE Sensors Journal, 2023, 23 (10): 10718- 10730.
doi: 10.1109/JSEN.2023.3264458 |
8 | GE J J, LI C X. Multi-radar hybrid detection algorithm based on information entropy[C]//Proc. of the CIE International Confe-rence on Radar, 2016. |
9 |
ZHANG Y X , WANG L X , FENG N X , et al. A 3-D high- order reverse-time migration method for high-resolution subsurface imaging with a multistation ultra-wideband radar system[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2019, 12 (2): 744- 751.
doi: 10.1109/JSTARS.2019.2892650 |
10 | SUN J , YI W , VARSHNEY P K , et al. Resource scheduling for multi-target tracking in multi-radar systems with imperfect detection[J]. IEEE Trans.on Signal Processing, 2020, 70, 3878- 3893. |
11 |
TEMIZ M , GRIFFITHS H , RITCHIE M A . Improved target localization in multiwaveform multiband hybrid multistatic radar networks[J]. IEEE Sensors Journal, 2022, 22 (21): 20785- 20796.
doi: 10.1109/JSEN.2022.3206586 |
12 |
CHEN J , WANG F , ZHOU J J , et al. Short-time velocity identification and coherent-like detection of ultrahigh speed targets[J]. IEEE Trans.on Signal Processing, 2018, 66 (18): 4811- 4825.
doi: 10.1109/TSP.2018.2862407 |
13 |
WANG L Z , XIE G , QIAN F C . A novel model for analyzing the statistical properties of targets' RCS[J]. IEEE Signal Processing Letters, 2022, 29, 583- 586.
doi: 10.1109/LSP.2021.3125261 |
14 |
杨英科, 李宏, 李文臣, 等. 目标起伏特性对雷达检飞试验的影响及应用[J]. 现代雷达, 2013, 35 (2): 22-25, 30.
doi: 10.3969/j.issn.1004-7859.2013.02.007 |
YANG Y K , LI H , LI W C , et al. The influence of target fluctuation characteristics on radar flight detection test and its application[J]. Modern Radar, 2013, 35 (2): 22-25, 30.
doi: 10.3969/j.issn.1004-7859.2013.02.007 |
|
15 | 郑全普, 郝建华, 俞雷, 等. 目标起伏特性对雷达威力性能的影响分析[J]. 现代防御技术, 2013, 41 (4): 131-134, 165. |
ZHENG Q P , HAO J H , YU L , et al. Analysis of the impact of target fluctuation characteristics on radar power performance[J]. Modern Defense Technology, 2013, 41 (4): 131-134, 165. | |
16 |
WANG X , QIN P Y , JIN R H . Low RCS transmitarray employing phase controllable absorptive frequency-selective transmission elements[J]. IEEE Trans.on Antennas and Propagation, 2021, 69 (4): 2398- 2403.
doi: 10.1109/TAP.2020.3023796 |
17 |
HUANG H , OMAR A , SHEN Z X . Low-RCS and beam-steerable dipole array using absorptive frequency-selective reflection structures[J]. IEEE Trans.on Antennas and Propagation, 2020, 68 (3): 2457- 2462.
doi: 10.1109/TAP.2019.2943322 |
18 |
JIA Y T , LIU Y , FENG Y J , et al. Low-RCS holographic antenna with enhanced gain based on frequency-selective absorber[J]. IEEE Trans.on Antennas and Propagation, 2020, 68 (9): 6516- 6526.
doi: 10.1109/TAP.2020.2985160 |
19 |
HE C , WEI S P , LI Y C . Feature-aided RGPO jamming discrimination within wideband radar maneuvering target tracking[J]. IEEE Trans.on Aerospace and Electronic Systems, 2023, 59 (6): 7938- 7950.
doi: 10.1109/TAES.2023.3299440 |
20 |
DAI J H , YAN J K , PU W Q . Adaptive channel assignment for maneuvering target tracking in multistatic passive radar[J]. IEEE Trans.on Aerospace and Electronic Systems, 2023, 59 (3): 2780- 2793.
doi: 10.1109/TAES.2022.3218610 |
21 |
WANG M X , LI X L , GAO L J . Signal accumulation method for high-speed maneuvering target detection using airborne coherent MIMO radar[J]. IEEE Trans.on Signal Processing, 2023, 71, 2336- 2351.
doi: 10.1109/TSP.2023.3286954 |
22 | LI X Z, WANG S Y, ZHENG D K. A DP-TBD algorithm with adaptive state transition set for maneuvering targets[C]//Proc. of the CIE International Conference on Radar, 2016. |
23 |
WEN J , FU X J , CHANG J Y , et al. An improved de-interleaving algorithm of radar pulses based on SOFM with self-adaptive network topology[J]. Journal of Systems Engineering and Electronics, 2020, 31 (4): 712- 721.
doi: 10.23919/JSEE.2020.000046 |
24 |
LI H B , MEHUL A , LE K J , et al. Sequential human gait classification with distributed radar sensor fusion[J]. IEEE Sensors Journal, 2021, 21 (6): 7590- 7603.
doi: 10.1109/JSEN.2020.3046991 |
25 |
BETHI P , LINGA R C . GPS spoofing detection and mitigation for drones using distributed radar tracking and fusion[J]. IEEE Sensors Journal, 2022, 22 (11): 11122- 11134.
doi: 10.1109/JSEN.2022.3168940 |
26 |
SUN J , YI W , PRAMOD K V . Resource scheduling for multi-target tracking in multi-radar systems with imperfect detection[J]. IEEE Trans.on Signal Processing, 2022, 70, 3878- 3893.
doi: 10.1109/TSP.2022.3191800 |
27 |
HU A , ZUO L , PRAMOD K V . Resource allocation for distributed multitarget tracking in radar networks with missing data[J]. IEEE Trans.on Signal Processing, 2024, 72, 718- 734.
doi: 10.1109/TSP.2024.3352915 |
28 |
ZHU Z H , STEVEN K , RAMACHANDRAN S R . Information-theoretic optimal radar waveform design[J]. IEEE Signal Processing Letters, 2017, 24 (3): 274- 278.
doi: 10.1109/LSP.2017.2655879 |
29 |
YUAN T , KRISHNAN K , CHEN Q . Object matching for inter-vehicle communication systems—an IMM-based track association approach with sequential multiple hypothesis test[J]. IEEE Trans.on Intelligent Transportation Systems, 2017, 18 (12): 3501- 3512.
doi: 10.1109/TITS.2017.2723894 |
30 |
LI K Y , ZHOU G J , CUI N G . Motion modeling and state estimation in range-squared coordinate[J]. IEEE Trans.on Signal Processing, 2022, 70, 5279- 5294.
doi: 10.1109/TSP.2022.3220021 |
31 |
MAROM H , BARSHALOM Y , MILGROM B . Unbiased conversion of 3-D bistatic radar measurements to cartesian position[J]. IEEE Trans.on Aerospace and Electronic Systems, 2023, 59 (2): 1613- 1623.
doi: 10.1109/TAES.2022.3203958 |
32 |
AUBRY A , BRACA P , MAIO A D , et al. 2-D PBR localization complying with constraints forced by active radar measurements[J]. IEEE Trans.on Aerospace and Electronic Systems, 2021, 57 (5): 2647- 2660.
doi: 10.1109/TAES.2021.3067612 |
33 | XU M M , BU X Z , YANG H Q . Dual-band infrared and geomagnetic fusion attitude estimation algorithm based on IMMEKF[J]. IEEE Trans.on Industrial Electronics, 2020, 68 (11): 11286- 11295. |
[1] | 陈壮壮, 宋骊平. 机动目标跟踪的交互多模型泊松多伯努利混合滤波[J]. 系统工程与电子技术, 2024, 46(3): 786-794. |
[2] | 朱瀚神, 胡文华, 郭宝锋, 焦丽婷, 朱晓秀, 朱常安. 双基地ISAR稀疏孔径机动目标MTRC补偿成像算法[J]. 系统工程与电子技术, 2023, 45(7): 2022-2030. |
[3] | 张宏伟. 双站纯方位空时软约束无迹粒子滤波算法[J]. 系统工程与电子技术, 2023, 45(5): 1261-1269. |
[4] | 杨宇超, 方明, 赵晨帆, 方刚. 高速机动目标长时间相参积累算法[J]. 系统工程与电子技术, 2023, 45(5): 1359-1370. |
[5] | 陈维义, 何凡, 刘国强, 毛伟伟. 变结构交互式多模型滤波和平滑算法[J]. 系统工程与电子技术, 2023, 45(12): 4005-4012. |
[6] | 侯子林, 程婷, 彭瀚. 基于量测转换序贯滤波的GMPHD机动目标跟踪[J]. 系统工程与电子技术, 2022, 44(8): 2474-2482. |
[7] | 王晓海, 孟秀云, 周峰, 邱文杰. 基于偏置比例导引的落角约束滑模制导律[J]. 系统工程与电子技术, 2021, 43(5): 1295-1302. |
[8] | 卢雨, 王海滨. 空基无源相干定位系统的机动目标跟踪算法[J]. 系统工程与电子技术, 2021, 43(4): 875-882. |
[9] | 李纪三, 蔡文彬, 耿利祥, 刘溶, 任渊. 旋转相控阵雷达变数据率目标跟踪算法[J]. 系统工程与电子技术, 2021, 43(3): 676-683. |
[10] | 尹聚祺, 杨震, 罗亚中, 周剑勇. 空间机动目标跟踪的改进自适应IMM算法[J]. 系统工程与电子技术, 2021, 43(12): 3658-3666. |
[11] | 陈星, 李战武, 徐安, 胡晓东. 基于目标机动模式识别的VSMM算法[J]. 系统工程与电子技术, 2020, 42(5): 999-1006. |
[12] | 张秦浩, 敖百强, 张秦雪. Q-learning强化学习制导律[J]. 系统工程与电子技术, 2020, 42(2): 414-419. |
[13] | 刘代, 赵永波, 周永伟, 陈明哲, 李伟. 高分辨距离像辅助的机动目标跟踪算法[J]. 系统工程与电子技术, 2019, 41(9): 1967-1972. |
[14] | 刘松涛, 王战, 位宝燕. 融合常规运动目标和突然机动目标的图像跟踪系统[J]. 系统工程与电子技术, 2019, 41(8): 1692-1698. |
[15] | 景亮, 张忠阳, 崔乃刚, 吴荣. 固定时间收敛扰动观测终端滑模制导律设计[J]. 系统工程与电子技术, 2019, 41(8): 1820-1826. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||