1 |
BHAMIDIPATI S , MINA T , SANCHEZ A , et al. Satellite constellation design for a lunar navigation and communication system[J]. NAVIGATION : Journal of the Institute of Navigation, 2023, 70 (4): 613.
doi: 10.33012/navi.613
|
2 |
XU X Y , WANG C H , JIN Z H . An analysis method for ISL of multilayer constellation[J]. Journal of Systems Engineering and Electronics, 2022, 33 (4): 961- 968.
doi: 10.23919/JSEE.2022.000093
|
3 |
王晓伟, 詹亚锋, 谢浩然, 等. 通导一体化环月星座设计初探[J]. 系统工程与电子技术, 2023, 45 (1): 241- 249.
doi: 10.12305/j.issn.1001-506X.2023.01.28
|
|
WANG X W , ZHAN Y F , XIE H R , et al. A preliminary study on the design of constellation orbiting the moon with the communication and navigation integration[J]. Systems Engineering and Electronics, 2023, 45 (1): 241- 249.
doi: 10.12305/j.issn.1001-506X.2023.01.28
|
4 |
LI Z Q , XIE Y Q , HOU W Z , et al. In-orbit test of the pola-rized scanning atmospheric corrector (PSAC) onboard Chinese environmental protection and disaster monitoring satellite constellation HJ-2 A/B[J]. IEEE Trans.on Geoscience and Remote Sensing, 2022, 60, 4108217.
|
5 |
KIMIJIMA S , NAGAI M . Monitoring mining-induced geo-ha-zards in a contaminated mountainous region of Indonesia using satellite imagery[J]. Remote Sensing, 2023, 15 (13): 3436.
doi: 10.3390/rs15133436
|
6 |
BERNARDI M S , AFRICA P C , FALCO C D , et al. On the use of interferometric synthetic aperture radar data for monitoring and forecasting natural hazards[J]. Mathematical Geosciences, 2021, 53 (8): 1781- 1812.
doi: 10.1007/s11004-021-09948-8
|
7 |
CAPEZ G M , HENN S , FRAIRE J A , et al. Sparse satellite constellation design for global and regional direct-to-satellite IoT services[J]. IEEE Trans.on Aerospace and Electronic Systems, 2022,, 58 (5): 3786- 3801.
doi: 10.1109/TAES.2022.3185970
|
8 |
PEGHER D J, PARISH J A. Optimizing coverage and revisit time in sparse military satellite constellations: a comparison of traditional approaches and genetic algorithms[R]. Monterey: Naval Postgraduate School, 2004.
|
9 |
ULYBYSHEV Y . Satellite constellation design for complex coverage[J]. Journal of Spacecraft and Rockets, 2008, 45 (4): 843- 849.
doi: 10.2514/1.35369
|
10 |
WALKER J G. Circular orbit patterns providing continuous whole earth coverage[R]. London: Royal Aircraft Establishment, 1970.
|
11 |
陈雨, 赵灵峰, 刘会杰, 等. 低轨Walker星座构型演化及维持策略分析[J]. 宇航学报, 2019, 40 (11): 1296- 1303.
|
|
CHEN Y , ZHAO L F , LIU H J , et al. Analysis of configuration and maintenance strategy of LEO Walker constellation[J]. Journal of Astronautics, 2019, 40 (11): 1296- 1303.
|
12 |
DENG Z L , GE W X , YIN L , et al. Optimization design of two-layer walker constellation for LEO navigation augmentation using a dynamic multi-objective differential evolutionary algorithm based on elite guidance[J]. GPS Solutions, 2023, 27 (1): 26.
doi: 10.1007/s10291-022-01366-5
|
13 |
VEMURI S S, DAPPURI B. Walker-delta constellation design for LEO-based navigation using small satellites[C]//Proc. of the 7th International Conference on Computing in Engineering & Technology, 2022: 250-253.
|
14 |
KITAJIMA N , SETO R , YAMAZAKI D , et al. Potential of a SAR small-satellite constellation for rapid monitoring of flood extent[J]. Remote Sensing, 2021, 13 (10): 1959.
doi: 10.3390/rs13101959
|
15 |
LUO Y Z, SHU P. Optimization design of Walker constellation for multi-target rapid revisit[C]//Proc. of the 8th International Conference on Instrumentation & Measurement, Computer, 2018: 483-486.
|
16 |
LANG T J. LEO constellations to cover the earth in one rev[C]// Proc. of the American Institute of Aeronautics and Astronautics Astrodynamics Specialist Conference, 2014.
|
17 |
FERRINGER M P , SPENCER D B . Satellite constellation design tradeoffs using multiple-objective evolutionary computation[J]. Journal of Spacecraft and Rockets, 2006, 43 (6): 1404- 1411.
doi: 10.2514/1.18788
|
18 |
MORTARI D , WILKINS M P , BRUCCOLERI C . The flower constellations[J]. The Journal of the Astronautical Sciences, 2004, 52 (1/2): 107- 127.
|
19 |
RAZOUMNY Y N. Route theory for optimal design of satellite constellations to minimize revisit time in low Earth orbits[C]//Proc. of the International Astronautical Federation-the 56th International Astronautical Congress, 2005.
|
20 |
RAZOUMNY Y N . Fundamentals of the route theory for satellite constellation design for earth discontinuous coverage. part 2: synthesis of satellite orbits and constellations[J]. Acta Astronautica, 2016, 128:, 741- 758.
doi: 10.1016/j.actaastro.2016.07.016
|
21 |
RAZOUMNY Y N . Route satellite constellations for earth discontinuous coverage and optimal solution peculiarities[J]. Journal of Spacecraft and Rockets, 2017, 54 (3): 572- 581.
doi: 10.2514/1.A33689
|
22 |
ZHANG T J , SHEN H X , LI Z , et al. Restricted constellation design for regional navigation augmentation[J]. Acta Astronautica, 2018, 150, 231- 239.
doi: 10.1016/j.actaastro.2018.04.044
|
23 |
ULYBYSHEV Y . Geometric analysis and design method for discontinuous coverage satellite constellations[J]. Journal of Guidance, Control, and Dynamics, 2014, 37 (2): 549- 557.
doi: 10.2514/1.60756
|
24 |
ULYBYSHEV Y . General analysis method for discontinuous coverage satellite constellations[J]. Journal of Guidance, Control, and Dynamics, 2015, 38 (12): 2475- 2483.
doi: 10.2514/1.G001254
|
25 |
HE X Y , LI H Y . Analytical solutions for earth discontinuous coverage of satellite constellation with repeating ground tracks[J]. Chinese Journal of Aeronautics, 2022, 35 (10): 275- 291.
doi: 10.1016/j.cja.2021.11.012
|
26 |
HAN C , ZHANG Y J , BAI S Z . Geometric analysis of ground-target coverage from a satellite by field-mapping method[J]. Journal of Guidance, Control, and Dynamics, 2021, 44 (8): 1469- 1480.
doi: 10.2514/1.G005719
|
27 |
龚宇鹏, 张世杰. 偶数重连续覆盖的Walker星座设计方法[J]. 宇航学报, 2022, 43 (9): 1163- 1175.
|
|
GONG Y P , ZHANG S J . Design method for even-fold continuous- coverage Walker constellation[J]. Journal of Astronautics, 2022, 43 (9): 1163- 1175.
|
28 |
林宗坚, 李德仁, 胥燕婴. 对地观测技术最新进展评述[J]. 测绘科学, 2011, 36 (4): 5- 8.
|
|
LIN Z J , LI D R , XU Y Y . General review on the new progress of Earth observations[J]. Science of Surveying and Mapping, 2011, 36 (4): 5- 8.
|
29 |
ZHU Y H , WANG H , ZHANG J . Spacecraft multiple-impulse trajectory optimization using differential evolution algorithm with combined mutation strategies and boundary-handling schemes[J]. Mathematical Problems in Engineering, 2015, 2015, 949480.
|
30 |
宋志明. 星座对地覆盖问题的形式化体系构建与求解算法研究[D]. 武汉: 中国地质大学, 2015: 51-54.
|
|
SONG Z M. Formal system construction and solving algorithm research for coverage problem of constellation to ground[D]. Wuhan: China University of Geosciences, 2015: 51-54.
|
31 |
HE X Y , LI H Y . General analysis method for global revisit characteristics of satellite constellation with repeating ground tracks[J]. Acta Astronautica, 2023, 202, 319- 332.
doi: 10.1016/j.actaastro.2022.10.051
|