1 |
RILES K . Gravitational waves: sources, detectors and searches[J]. Progress in Particle and Nuclear Physics, 2013, 68, 1- 54.
doi: 10.1016/j.ppnp.2012.08.001
|
2 |
GIAMMARCHI M , RICCI F . Gravitational waves, event horizons and black hole observation: a new frontier in fundamental physics[J]. Symmetry, 2022, 14 (11): 2276.
doi: 10.3390/sym14112276
|
3 |
MASTROGIOVANNI S , KARATHANASIS C , GAIR J , et al. Cosmology with gravitational waves: a review[J]. Annalen Der Physik, 2024, 536 (2): 2200180.
doi: 10.1002/andp.202200180
|
4 |
LEVERENZ H , FILIPOVIC M . The past, present and future of gravitational wave astronomy[J]. Serbian Astronomical Journal, 2021, 203, 1- 14.
|
5 |
ABBOTT B P , ABBOTT R , ABBOTT T D , et al. Observation of gravitational waves from a binary black hole merger[J]. Physical Review Letters, 2016, 116 (6): 061102.
doi: 10.1103/PhysRevLett.116.061102
|
6 |
FOIT V F , KLEBAN M . Testing quantum black holes with gravitational waves[J]. Classical and Quantum Gravity, 2019, 36 (3): 035006.
doi: 10.1088/1361-6382/aafcba
|
7 |
SESANA A . Black hole science with the laser interferometer space antenna[J]. Frontiers in Astronomy and Space Sciences, 2021, 8, 601646.
doi: 10.3389/fspas.2021.601646
|
8 |
AMARO-SEOANE P , ANDREWS J , ARCA SEDDA M , et al. Astrophysics with the laser interferometer space antenna[J]. Living Reviews in Relativity, 2023, 26 (1): 2.
doi: 10.1007/s41114-022-00041-y
|
9 |
CRUISE A M . Gravitational wave science from space[J]. AVS Quantum Science, 2022, 4 (2): 025301.
doi: 10.1116/5.0072851
|
10 |
RUAN W H , GUO Z K , CAI R G , et al. Taiji program: gravitational-wave sources[J]. International Journal of Modern Physics A, 2020, 35 (17): 2050075.
doi: 10.1142/S0217751X2050075X
|
11 |
AMARO-SEOANE P, AUDLEY H, BABAK S, et al. Laser interferometer space antenna[EB/OL]. [2023-12-27]. http://arxiv.org/abs/1702.00786.
|
12 |
HU W R , WU Y L . The Taiji program in space for gravitational wave physics and the nature of gravity[J]. National Science Review, 2017, 4 (5): 685- 686.
doi: 10.1093/nsr/nwx116
|
13 |
LUO J , CHEN L S , DUAN H Z , et al. Tianqin: a space-borne gravitational wave detector[J]. Classical and Quantum Gravity, 2016, 33 (3): 035010.
doi: 10.1088/0264-9381/33/3/035010
|
14 |
JENNRICH O . LISA technology and instrumentation[J]. Classical and Quantum Gravity, 2009, 26 (15): 153001.
doi: 10.1088/0264-9381/26/15/153001
|
15 |
MARTENS W , JOFFRE E . Trajectory design for the ESA LISA mission[J]. The Journal of the Astronautical Sciences, 2021, 68 (2): 402- 443.
doi: 10.1007/s40295-021-00263-2
|
16 |
LUO Z R , WANG Y , WU Y L , et al. The Taiji program: a concise overview[J]. Progress of Theoretical and Experimental Physics, 2021, 2021 (5): 05A108.
doi: 10.1093/ptep/ptaa083
|
17 |
MEI J W , BAI Y Z , BAO J H , et al. The Tianqin project: current progress on science and technology[J]. Progress of Theoretical and Experimental Physics, 2021, 2021 (5): 05A.
|
18 |
ARMANO M , AUDLEY H , BAIRD J , et al. Beyond the required LISA free-fall performance: new LISA pathfinder results down to 20 μHz[J]. Physical Review Letters, 2018, 120 (6): 061101.
doi: 10.1103/PhysRevLett.120.061101
|
19 |
LUO Z R , ZHANG M , WU Y L . Recent status of Taiji program in China[J]. Chinese Journal of Space Science, 2022, 42 (4): 536- 538.
doi: 10.11728/cjss2022.04.yg03
|
20 |
LUO J , BAI Y Z , CAI L , et al. The first round result from the Tianqin-1 satellite[J]. Classical and Quantum Gravity, 2020, 37 (18): 185013.
doi: 10.1088/1361-6382/aba66a
|
21 |
方子若, 侍行剑, 陈琨, 等. 引力波探测航天器噪声分解及电磁力噪声仿真[J]. 深空探测学报, 2023, 10 (3): 334- 342.
|
|
FANG Z R , SHI X J , CHEN K , et al. Gravitational wave detection spacecraft noise decomposition and electromagnetic force noise simulation[J]. Journal of Deep Space Exploration, 2023, 10 (3): 334- 342.
|
22 |
冯建朝, 张晓峰, 梁鸿, 等. 太极二号卫星精密热控关键技术及试验验证[J]. 宇航学报, 2023, 44 (1): 132- 142.
|
|
FENG J C , ZHANG X F , LIANG H , et al. Key technology and experimental verification of precision thermal control of Taiji 2 satellite[J]. Journal of Astronautics, 2023, 44 (1): 132- 142.
|
23 |
ZHAO Y , SHEN J , FANG C , et al. Far-field optical path noise coupled with the pointing jitter in the space measurement of gravitational waves[J]. Applied Optics, 2021, 60 (2): 438- 444.
doi: 10.1364/AO.405467
|
24 |
GOPSTEIN A M , HAILE W B , MERKOWITZ S M . Self-gravity analysis and visualization tool For LISA[J]. AIP Conference Proceedings, 2006, 873 (1): 571- 575.
|
25 |
STEBBINS R T , BENDER P L , HANSON J , et al. Current error estimates for LISA spurious accelerations[J]. Classical and Quantum Gravity, 2004, 21 (5): S653.
doi: 10.1088/0264-9381/21/5/039
|
26 |
BRANDT N , FICHTER W , KERSTEN M , et al. End-to-end modeling for drag-free missions with application to LISA pathfinder[J]. IFAC Proceedings Volumes, 2004, 37 (6): 241- 246.
doi: 10.1016/S1474-6670(17)32180-8
|
27 |
MERKOWITZ S M , CONKEY S , HAILE W B , et al. Structural, thermal, optical and gravitational modelling for LISA[J]. Classical and Quantum Gravity, 2004, 21 (5): S603.
doi: 10.1088/0264-9381/21/5/032
|
28 |
SWANK A J . Gravitational mass attraction: properties of a right-angled parallelepiped for the LISA drag-free system[J]. Classical and Quantum Gravity, 2006, 23 (10): 3437.
doi: 10.1088/0264-9381/23/10/014
|
29 |
林志勇. 空间引力波探测自引力仿真技术研究[D]. 西安: 长安大学, 2023.
|
|
LIN Z Y. Research on self-gravitational simulation technology of space gravitational wave detection[D]. Xi'an: Chang'an University, 2023.
|
30 |
高志勇, 王上, 王智. 基于FEM的引力参考传感器自引力计算与补偿[J]. 中国空间科学技术, 2024, 44 (2): 89- 97.
|
|
GAO Z Y , WANG S , WANG Z . Calculation and compensation of self-gravity for gravitational reference sensor based on finite element method[J]. Chinese Space Science and Technology, 2024, 44 (2): 89- 97.
|
31 |
EVANS J P . Plan for compensation of self-gravity on ST-7/DRS[J]. Classical and Quantum Gravity, 2005, 22 (10): S177.
doi: 10.1088/0264-9381/22/10/007
|
32 |
MERKOWITZ S M , HAILE W B , CONKEY S , et al. Self-gravity modelling for LISA[J]. Classical and Quantum Gravity, 2005, 22 (10): S395.
doi: 10.1088/0264-9381/22/10/035
|