1 |
HUANG C , MAJUMDAR A . A combined invariant-subspace and subspace identification method for continuous-time state-space models using slowly sampled multi-sine-wave data[J]. Automatica, 2022, 140, 110261.
doi: 10.1016/j.automatica.2022.110261
|
2 |
庞志雅, 马志赛, 丁千. 基于神经网络和子空间的非线性系统载荷识别[J]. 振动、测试与诊断, 2022, 42 (5): 877- 885.
|
|
PANG Z Y , MA Z S , DING Q . Force identification for nonlinear systems based on neural network and subspace method[J]. Journal of Vibration, Measurement & Diagnosis, 2022, 42 (5): 877- 885.
|
3 |
VARANASI S K , JAMPANA P . Nuclear norm subspace identification of continuous time state-space models with missing outputs[J]. Control Engineering Practice, 2020, 95, 104239.
doi: 10.1016/j.conengprac.2019.104239
|
4 |
LI K , LUO H , YIN S , et al. A novel bias-eliminated subspace identification approach for closed-loop systems[J]. IEEE Trans.on Industrial Electronics, 2021, 68 (6): 5167- 5205.
|
5 |
YU M , GUO G , LIU J C , et al. Closed-loop time-varying continuous-time recursive subspace-based prediction via principle angles rotation[J]. ISA Transactions, 2022, 122, 135- 145.
doi: 10.1016/j.isatra.2021.04.047
|
6 |
GARNIER H , WANG L . Identification of continuous time models from sampled data[M]. London: Springer, 2008.
|
7 |
GARNIER H , MENSLER M , RICHARD A . Continuous-time model identification from sampled data: implementation issues and performance evaluation[J]. International Journal of Control, 2003, 76 (13): 1337- 1357.
doi: 10.1080/0020717031000149636
|
8 |
BASTOGNE T , GARNIER H , SIBILLE P . A PMF-based subspace method for continuous time model identification: application to a multivariable winding process[J]. International Journal of Control, 2001, 74 (2): 118- 132.
doi: 10.1080/00207170150203471
|
9 |
VARANASI S K , JAMPANA P . Nuclear norm subspace identification of continuous time state-space models with missing outputs[J]. Control Engineering Practice, 2020, 95 (7): 104239.
|
10 |
DAI M X , YANG X M . Continuous-time system identification with nuclear norm minimization and GPMF-based subspace method[J]. IEEE/CAA Journal of Automatica Sinica, 2016, 3 (2): 184- 191.
doi: 10.1109/JAS.2016.7451106
|
11 |
PRASADA R G , SAHA D C , RAO T M , et al. A microprocessor-based system for on-line parameter identification in continuous dynamical systems[J]. IEEE Trans.on Industrial Electronics, 1982, 29 (3): 197- 201.
|
12 |
GARNIER H, SIBILLE P, MENSLER M, et al. Pilot crane identification and control in presence of friction[C]//Proc. of the 13th IFAC World Congresss, 1996: 107-112.
|
13 |
HOUTZAGER I , WINGERDEN J W V , VERHAEGEN M . Recursive predictor-based subspace identification with application to the real-time closed-loop tracking of flutters[J]. IEEE Trans.on Automatic Control, 2012, 20 (4): 934- 949.
|
14 |
HUANG B , DING S X , QIN S J . Closed-loop subspace identification: an orthogonal projection approach[J]. Journal of Process Control, 2005, 15 (1): 53- 66.
doi: 10.1016/j.jprocont.2004.04.007
|
15 |
WANG J , QIN S J . Closed-loop subspace identification using the parity space[J]. Automatica, 2006, 42, 315- 320.
doi: 10.1016/j.automatica.2005.09.012
|
16 |
KATAYAMA T , TANAKA H . An approach to closed-loop subspace identification by orthogonal decomposition[J]. Automatica, 2007, 43, 1623- 1630.
doi: 10.1016/j.automatica.2007.02.011
|
17 |
WINGERDEN J W V , VERHAEGEN M . Subspace identification of bilinear and LPV systems for open-and closed-loop data[J]. Automatica, 2009, 45, 372- 381.
doi: 10.1016/j.automatica.2008.08.015
|
18 |
CHIUSO A . On the asymptotic properties of closed-Loop CCA-type subspace algorithms: equivalence results and role of the future horizon[J]. IEEE Trans.on Automatic Control, 2010, 55 (3): 634- 649.
doi: 10.1109/TAC.2009.2039239
|
19 |
BERGAMASCO M , LOVERA M . Continuous-time predictor-based subspace identification using Laguerre filters[J]. IET Control Theory & Applications, 2011, 5 (7): 856- 867.
|
20 |
ZHANG L , ZHOU D H , ZHONG M Y , et al. Improved closed-loop subspace identification based on principal component analysis and prior information[J]. Journal of Process Control, 2019, 80, 235- 246.
doi: 10.1016/j.jprocont.2019.06.001
|
21 |
GUNES B , WINGERDEN J W V , VERHAEGEN M . Tensor networks for MIMO LPV system identification[J]. International Journal of Control, 2020, 93 (4): 797- 811.
doi: 10.1080/00207179.2018.1501515
|
22 |
HU Y S , JIANG Y F , CALLAFON R A D . Variance reduction in covariance based realization algorithm with application to closed-loop data[J]. Automatica, 2020, 113, 108683.
doi: 10.1016/j.automatica.2019.108683
|
23 |
夏悠然, 管军, 易文俊. 基于改进粒子群优化极限学习机的弹丸参数辨识[J]. 系统工程与电子技术, 2023, 45 (2): 521- 529.
|
|
XIA Y R , GUAN J , YI W J . Projectile parameter identification: extreme learning machine optimized by improved particle swarm[J]. Systems Engineering and Electronics, 2023, 45 (2): 521- 529.
|
24 |
YU M , LIU J C , GUO G , et al. Recursive subspace identification of continuous-time systems using generalized Poisson moment functionals[J]. Circuits, Systems, and Signal Processing, 2022, 41, 1848- 1868.
doi: 10.1007/s00034-021-01871-x
|
25 |
王永刚, 毛博年, 高东. 一种补偿t-OPT噪声的冗余捷联惯组故障检测方法[J]. 航空控制, 2023, 41 (3): 26- 32.
|
|
WANG Y G , MAO B N , GAO D . SINS fault detection based on compensation t-OPT noise[J]. Aerospace Control, 2023, 41 (3): 26- 32.
|
26 |
JAHANDARI S , MATERASSI D . Sufficient and necessary graphical conditions for MISO identification in networks with observational data[J]. IEEE Trans.on Automatic Control, 2022, 67 (11): 5932- 5947.
doi: 10.1109/TAC.2021.3130885
|
27 |
SZENTPETERI S , CSAJI B C . Non-asymptotic state-space identification of closed-loop stochastic linear systems using instrumental variables[J]. Systems & Control Letters, 2023, 178, 105565.
|
28 |
SUN S Y , YANG B , ZHANG Q L , et al. A microprocessor-based system for on-line parameter identification in continuous dynamical systems[J]. Mechanical Systems and Signal Processing, 2023, 197, 110326.
doi: 10.1016/j.ymssp.2023.110326
|
29 |
张伟, 许爱强, 平殿发. 基于稀疏化核方法的非线性动态系统在线辨识[J]. 系统工程与电子技术, 2017, 39 (1): 223- 230.
|
|
ZHANG W , XU A Q , PING D F . Nonlinear system online identification based on kernel sparse learning algorithm with adaptive regulation factor[J]. Systems Engineering and Electronics, 2017, 39 (1): 223- 230.
|
30 |
WANG J , QIN S J . A new subspace identification approach based on principal component analysis[J]. Journal of Process Control, 2002, 12, 841- 855.
doi: 10.1016/S0959-1524(02)00016-1
|
31 |
GU S W , CHEN J H , XIE L . Automatic segmentation of batch processes into multi-local state-space models for fault detection[J]. Chemical Engineering Science, 2023, 267, 118274.
doi: 10.1016/j.ces.2022.118274
|