1 |
魏明英, 崔正达, 李运迁. 多弹协同拦截综述与展望[J]. 航空学报, 2020, 41 (S1): 29- 36.
|
|
WEI M Y , CUI Z D , LI Y Q . Review and future development of multi-missile coordinated interception[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41 (S1): 29- 36.
|
2 |
董希旺, 于江龙, 化永朝, 等. 多飞行器攻击时间一致性协同制导进展综述与展望[J]. 北京航空航天大学学报, 2022, 48 (9): 1836- 1844.
|
|
DONG X W , YU J L , HUA Y Z , et al. Review and prospect of cooperative guidance with attack time consensus for multiple ae-rial vehicles[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48 (9): 1836- 1844.
|
3 |
JEON I S , LEE J I , TAHK M J . Impact-time-control guidance law for anti-ship missiles[J]. IEEE Trans.on Control Systems Technology, 2006, 14 (2): 260- 266.
doi: 10.1109/TCST.2005.863655
|
4 |
JEON I S , LEE J I , TAHK M J . Impact-time-control guidance with generalized proportional navigation based on nonlinear formulation[J]. Journal of Guidance, Control, and Dynamics, 2016, 39 (8): 1885- 1890.
doi: 10.2514/1.G001681
|
5 |
JEON I S , LEE J I , TAHK M J . Homing guidance law for cooperative attack of multiple missiles[J]. Journal of Guidance, Control, and Dynamics, 2010, 33 (1): 275- 280.
doi: 10.2514/1.40136
|
6 |
HE S M , LIN D F . Three-dimensional optimal impact time gui-dance for anti-ship missiles[J]. Journal of Guidance, Control, and Dynamics, 2019, 42 (4): 941- 948.
doi: 10.2514/1.G003971
|
7 |
刘远贺, 黎克波, 何绍溟, 等. 基于最优误差动力学的变速导弹飞行路程控制制导律[J]. 航空学报, 2023, 44 (7): 326909.
|
|
LIU Y H , LI K B , HE S M , et al. Flying range control guidance for varying-speed missiles based on optimal error dynamic[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44 (7): 326909.
|
8 |
ZHAO S Y , ZHOU R , WEI C , et al. Design of time-constrained guidance laws via virtual leader approach[J]. Chinese Journal of Aeronautics, 2010, 23 (1): 103- 108.
doi: 10.1016/S1000-9361(09)60193-X
|
9 |
DONG W , WANG C Y , WANG J N , et al. Varying-gain proportional navigation guidance for precise impact time control[J]. Journal of Guidance, Control, and Dynamics, 2023, 46 (3): 535- 552.
doi: 10.2514/1.G007174
|
10 |
CHO D , KIM H J , TAHK M J . Nonsingular sliding mode guidance for impact time control[J]. Journal of Guidance, Control, and Dynamics, 2016, 39 (1): 61- 68.
doi: 10.2514/1.G001167
|
11 |
HU Q L , HAN T , XIN M . Sliding-mode impact time guidance law design for various target motions[J]. Journal of Guidance, Control, and Dynamics, 2019, 42 (1): 136- 148.
doi: 10.2514/1.G003620
|
12 |
张帅, 宋天莉, 焦巍, 等. 带有拦截时间约束的协同制导方法研究[J]. 北京航空航天大学学报, 2023, 49 (8): 1956- 1963.
|
|
ZHANG S , SONG T L , JIAO W , et al. Research on cooperative guidance method with interception time constraint[J]. Journal of Beijing University of Aeronautics and Astronautics, 2023, 49 (8): 1956- 1963.
|
13 |
吴放, 常思江, 陈升富. 基于终端滑模理论的攻击时间控制制导律[J]. 系统工程与电子技术, 2019, 41 (10): 2334- 2342.
doi: 10.3969/j.issn.1001-506X.2019.10.24
|
|
WU F , CHANG S J , CHEN S F . Impact time control guidance law based on terminal sliding mode theory[J]. Systems Engineering and Electronics, 2019, 41 (10): 2334- 2342.
doi: 10.3969/j.issn.1001-506X.2019.10.24
|
14 |
花文华, 张拥军, 张金鹏, 等. 多导弹攻击时间协同的滑模制导律[J]. 中国惯性技术学报, 2018, 26 (1): 98- 102.
|
|
HUA W H , ZHANG Y J , ZHANG J P , et al. Sliding-mode gui-dance law for attack time cooperation of multi-missiles[J]. Journal of Chinese Inertial Technology, 2018, 26 (1): 98- 102.
|
15 |
常思江, 吴放, 陈升富. 无奇点三维攻击时间控制滑模导引律[J]. 国防科技大学学报, 2021, 43 (2): 84- 92.
|
|
CHANG S J , WU F , CHEN S F . Nonsingular sliding mode gui-dance law for impact time control in three-dimensional space[J]. Journal of National University of Defense Technology, 2021, 43 (2): 84- 92.
|
16 |
SALEEM A , RATNOO A . Lyapunov-based guidance law for impact time control and simultaneous arrival[J]. Journal of Guidance, Control, and Dynamics, 2016, 39 (1): 164- 173.
doi: 10.2514/1.G001349
|
17 |
TEKIN R , ERER K S , HOLZAPFEL F . Polynomial shaping of the look angle for impact-time control[J]. Journal of Gui-dance, Control, and Dynamics, 2017, 40 (10): 2668- 2673.
doi: 10.2514/1.G002751
|
18 |
TSALIK R , SHIMA T . Circular impact-time guidance[J]. Journal of Guidance, Control, and Dynamics, 2019, 42 (8): 1836- 1847.
doi: 10.2514/1.G004074
|
19 |
GUTMAN S . Impact-time vector guidance[J]. Journal of Guidance, Control, and Dynamics, 2017, 40 (8): 2110- 2114.
doi: 10.2514/1.G002556
|
20 |
WANG P Y , GUO Y N , MA G F , et al. New look-angle tracking guidance strategy for impact time and angle control[J]. Journal of Guidance, Control, and Dynamics, 2022, 45 (3): 545- 557.
doi: 10.2514/1.G006229
|
21 |
HONG H , TEKIN R , HOLZAPFEL F . Guaranteed smooth trajectory generation for field-of-view constrained impact-time control[J]. Journal of Guidance, Control, and Dynamics, 2021, 44 (4): 898- 904.
doi: 10.2514/1.G005723
|
22 |
杨哲, 林德福, 王辉. 带视场角限制的攻击时间控制制导律[J]. 系统工程与电子技术, 2016, 38 (9): 2122- 2128.
|
|
YANG Z , LIN D F , WANG H . Impact time control guidance law with field-of-view limit[J]. Systems Engineering and Electronics, 2016, 38 (9): 2122- 2128.
|
23 |
张友安, 梁勇, 刘京茂, 等. 基于轨迹成型的攻击角度与时间控制[J]. 航空学报, 2018, 39 (9): 143- 151.
|
|
ZHANG Y A , LIANG Y , LIU J M , et al. Trajectory reshaping based impact angle and time control[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39 (9): 143- 151.
|
24 |
LEE S , CHO N , KIM Y . Impact-time-control guidance strategy with a composite structure considering the seeker's field-of-view constraint[J]. Journal of Guidance, Control, and Dyna-mics, 2020, 43 (8): 1566- 1574.
doi: 10.2514/1.G005063
|
25 |
王晓芳, 王紫扬, 林海. 一种同时具有攻击时间和攻击角度约束的协同制导律[J]. 弹道学报, 2017, 29 (4): 1- 8.
doi: 10.3969/j.issn.1004-499X.2017.04.001
|
|
WANG X F , WANG Z Y , LIN H . A cooperative guidance law with constraints of impact time and impact angle[J]. Journal of Ballistics, 2017, 29 (4): 1- 8.
doi: 10.3969/j.issn.1004-499X.2017.04.001
|
26 |
WANG K , ZHENG C , WANG H , et al. Nonlinear optimal guidance for intercepting stationary targets with impact-time constraints[J]. Journal of Guidance, Control, and Dynamics, 2022, 45 (9): 1614- 1626.
doi: 10.2514/1.G006666
|
27 |
CHEN Z , SHIMA T . Nonlinear optimal guidance for intercepting a stationary target[J]. Journal of Guidance, Control, and Dynamics, 2019, 42 (11): 2418- 2431.
doi: 10.2514/1.G004341
|
28 |
MERKULOV G , WEIS M , SHIMA T . Minimum-effort impact-time control guidance using quadratic kinematics approximation[J]. Journal of Guidance, Control, and Dynamics, 2022, 45 (2): 348- 361.
doi: 10.2514/1.G006190
|
29 |
LU P, CHAVEZ F. Nonlinear optimal guidance[C]//Proc. of the AIAA Guidance, Navigation, and Control Conference and Exhibit, 2006: 6079.
|
30 |
GUELMAN M , SHINAR J . Optimal Guidance law in the plane[J]. Journal of Guidance, Control, and Dynamics, 1984, 7 (4): 471- 476.
doi: 10.2514/3.19880
|
31 |
ZHENG Y , CHEN Z , SHAO X M , et al. Time-optimal gui-dance for intercepting moving targets by Dubins vehicles[J]. Automatica, 2021, 128, 109557.
doi: 10.1016/j.automatica.2021.109557
|
32 |
LIU X F , SHEN Z J , LU P . Closed-loop optimization of gui-dance gain for constrained impact[J]. Journal of Guidance, Control, and Dynamics, 2017, 40 (2): 453- 460.
doi: 10.2514/1.G000323
|
33 |
CHEN Z . Second-order conditions for fuel-optimal control problems with variable endpoints[J]. Journal of Guidance, Control, and Dynamics, 2022, 45 (2): 335- 347.
doi: 10.2514/1.G005865
|
34 |
HORNIK K , STINCHCOMBE M , WHITE H . Multilayer feedforward networks are universal approximators[J]. Neural Networks, 1989, 2 (5): 359- 366.
doi: 10.1016/0893-6080(89)90020-8
|
35 |
WEN C Y , ZHOU J , LIN Z T , et al. Robust adaptive control of uncertain nonlinear systems in the presence of input saturation and external disturbance[J]. IEEE Trans.on Automatic Control, 2011, 56 (7): 1672- 1678.
doi: 10.1109/TAC.2011.2122730
|
36 |
RUSNAK I , MEIR L . Optimal guidance for high-order and acceleration constrained missile[J]. Journal of Guidance, Control, and Dynamics, 1991, 14 (3): 589- 596.
doi: 10.2514/3.20679
|
37 |
HEXNER G , PILA A . Practical stochastic optimal guidance law for bounded acceleration missiles[J]. Journal of Guidance, Control, and Dynamics, 2011, 34 (2): 437- 445.
doi: 10.2514/1.51543
|
38 |
ZHOU D , XU B . Adaptive dynamic surface guidance law with input saturation constraint and autopilot dynamics[J]. Journal of Guidance, Control, and Dynamics, 2016, 39 (5): 1155- 1162.
doi: 10.2514/1.G001236
|
39 |
LI T , QIAN H M . Design of three-dimensional guidance law with impact angle constraints and input saturation[J]. IEEE Access, 2020, 8, 211474- 211481.
doi: 10.1109/ACCESS.2020.3038830
|
40 |
PONTRYAGIN L S , BOLTYANSKI V G , GAMKRELIDZE R V , et al. The mathematical theory of optimal processes (Russian)[M]. United Kingdom: Interscience Publishers, 1962.
|
41 |
WANG Z , L I , Y . An indirect method for inequality constrained optimal control problems[J]. IFAC-PapersOnLine, 2017, 50 (1): 4070- 4075.
doi: 10.1016/j.ifacol.2017.08.790
|
42 |
CHEN Z , CAILLAU J B , CHITOUR Y . L1-minimization for mechanical systems[J]. SIAM Journal on Control and Optimization, 2016, 54 (3): 1245- 1265.
doi: 10.1137/15M1013274
|
43 |
PATTERSON M A , RAO A V . GPOPS-Ⅱ: a Matlab software for solving multiple-phase optimal control problems using hp-adaptive Gaussian quadrature collocation methods and sparse nonlinear programming[J]. ACM Transactions on Mathematical Software, 2015, 41 (1): 1- 37.
|