系统工程与电子技术 ›› 2023, Vol. 45 ›› Issue (12): 3887-3895.doi: 10.12305/j.issn.1001-506X.2023.12.18

• 系统工程 • 上一篇    

基于大样本数据的机场业务量需求预测方法

陈斌1,2,*, 吴瑾1   

  1. 1. 南京航空航天大学民航学院, 江苏 南京 211106
    2. 中国民航工程咨询有限公司, 北京 100621
  • 收稿日期:2022-11-02 出版日期:2023-11-25 发布日期:2023-12-05
  • 通讯作者: 陈斌
  • 作者简介:陈斌 (1985—), 男, 博士研究生, 主要研究方向为航空运输经济
    吴瑾 (1965—), 男, 教授, 博士研究生导师, 博士, 主要研究方向为结构耐久性及监测、航空运输经济
  • 基金资助:
    国家自然科学基金(51768014)

Airport traffic demand prediction method based on large sample data

Bin CHEN1,2,*, Jin WU1   

  1. 1. College of Civil Aviation, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
    2. China Civil Aviation Engineering Consulting Company Limited, Beijing 100621, China
  • Received:2022-11-02 Online:2023-11-25 Published:2023-12-05
  • Contact: Bin CHEN

摘要:

机场业务量预测是机场建设规模决策的重要依据, 基于大量样本数据, 采用模型构建和实证分析的方法研究机场业务量需求预测。首先提出相关性回归和主成分回归两种预测方法, 针对每个机场的客、货吞吐量, 构建一元线性回归、相关性回归、主成分回归和逐步回归4类细分预测模型, 并利用203个机场的客、货吞吐量数据对构建的模型进行实证分析。分析结果表明: 机场客、货吞吐量与各类宏观变量存在着不同程度的关联性, 其中与国内生产总值(gross domestic product, GDP)、社会消费品零售总额、居民可支配收入等变量呈现高度相关性。从4类预测方法的预测效果来看, 构建的相关性回归和主成分回归模型预测效果表现较好。统计发现, 在可允许的最大绝对误差百分比下, 在203个机场中回归分析法可有效预测的机场数量占比达50%以上。机场客、货吞吐量量级越高, 回归分析法可有效预测的机场数量越多, 旅客吞吐量千万级以上机场和货邮吞吐量5万吨以上机场的可预测机场数量占比均可达90%以上。

关键词: 机场, 旅客吞吐量, 货邮吞吐量, 预测方法, 回归分析法

Abstract:

The prediction of airport traffic demand is an important basis for the decision-making of airport construction scale. Based on a large amount of sample data, this article uses model construction and empirical analysis methods to study the prediction of airport traffic demand. Firstly, two prediction methods, correlation regression and principal component regression, are proposed to construct four types of segmented prediction models for the passenger and cargo throughput of each airport: linear regression, correlation regression, principal component regression, and stepwise regression. Empirical analysis is conducted on the constructed model using passenger and cargo throughput data from 203 airports. The empirical analysis results indicate that there are varying degrees of correlation between airport passenger and cargo throughput and various macro variables, among which there is a high correlation with variables such as gross domestic product (GDP), total retail sales of consumer goods, and residential disposable income. From the perspective of the predictive performance of the four types of prediction methods, the constructed correlation regression and principal component regression models perform well in predicting performance. Statistics result have found that under the allowable maximum absolute error percentage, over 50% of the 203 airports can be effectively predicted by regression analysis method. In addition, the higher the level of airport passenger and cargo throughput, the more effective the regression analysis method can predict the number of airports. The proportion of predictable airports with passenger throughput of over ten million and cargo and mail throughput of over 50 000 tons can both reach over 90%.

Key words: airport, passenger throughput, cargo and mail throughput, prediction method, regression analysis method

中图分类号: