1 |
苏丽, 孙雨鑫, 苑守正. 基于深度学习的实例分割研究综述[J]. 智能系统学报, 2022, 17 (1): 16- 31.
|
|
SU L , SUN Y X , YUAN S Z . A survey of instance segmentation research based on deep learning[J]. CAAI Trans.on Intelligent Systems, 2022, 17 (1): 16- 31.
|
2 |
HARIHARAN B, ARBELÁEZ P, GIRSHICK R, et al. Simultaneous detection and segmentation[C]//Proc. of the European Conference on Computer Vision, 2014: 297-312.
|
3 |
HE K M, GKIOXARI G, DOLLÁR P, et al. Mask R-CNN[C]// Proc. of the IEEE International Conference on Computer Vision, 2017: 2980-2988.
|
4 |
HUANG Z J, HUANG L C, GONG Y C, et al. Mask scoring R-CNN[C]//Proc. of the Conference on Computer Vision and Pattern Recognition, 2019: 6402-6411.
|
5 |
CHENG T H, WANG X G, HUANG L C, et al. Boundary-preserving mask R-CNN[C]//Proc. of the European Conference on Computer Vision, 2020: 660-676.
|
6 |
LONG J , SHELHAMER E , DARRELL T . Fully convolutional networks for semantic segmentation[J]. IEEE Trans.on Pattern Analysis and Machine Intelligence, 2015, 39 (4): 640- 651.
|
7 |
BOLYA D, ZHOU C, XIAO F Y, et al. YOLACT: real-time instance segmentation[C]//Proc. of the IEEE/CVF International Conference on computer Vision, 2019.
|
8 |
BOLYA D , ZHOU C , XIAO F Y , et al. YOLACT++: better real-time instance segmentation[J]. IEEE Trans.on Pattern Analysis and Machine Intelligence, 2022, 44 (2): 1108- 1121.
doi: 10.1109/TPAMI.2020.3014297
|
9 |
ASHISH V, NOAM S, NIKI P, et al. Attention is all you need[EB/OL]. [2022-05-09]. https://arxiv.org/abs/1706.03762v5.
|
10 |
HU J, CAO L J, LU Y, et al. ISTR: end-to-end instance segmentation with Transformers[EB/OL]. [2022-05-09]. https://arxiv.org/abs/2011.14503v4.
|
11 |
GUO R H, NIU D T, QU L, et al. SOTR: segmenting objects with Transformers[C]//Proc. of the Conference on Computer Vision and Pattern Recognition, 2021: 7157-7166.
|
12 |
LIU Z, LIN Y T, CAO Y, et al. Swin Transformer: hierarchical vision Transformer using shifted windows[C]//Proc. of the International Conference on Computer Vision, 2021: 10012-10022.
|
13 |
霍熠阳, 于涛, 高飞. 基于CenterMask的SAR舰船实例分割[C]// 第十三届全国DSP应用技术学术会议论文集, 2021: 150-155.
|
|
HUO Y Y, YU T, GAO F. SAR ship instance segmentation based on CenterMask[C]//Proc. of the 13th National Confe-rence on DSP Application Technology, 2021: 150-155.
|
14 |
ZAREMBA W, SUTSKEVER I, VINYALS O. Recurrent neural network regularization[EB/OL]. [2022-05-09]. https://arxiv.org/abs/1409.2329.
|
15 |
HENDRYCKS D, GIMPEL K. Gaussian error linear units (GELUs)[EB/OL]. [2022-05-09]. https://arxiv.org/abs/1606.08415v4.
|
16 |
GLOROT X, BORDES A, BENGIO Y. Deep sparse rectifier neural networks[C]//Proc. of the 14th International Confe-rence on Artificial Intelligence and Statistics, 2011: 315-323.
|
17 |
ZONG Z F, CAO Q G, LENG B. RCNet: reverse feature pyramid and cross-scale shift network for object detection[C]// Proc. of the 29th ACM International Conference on Multimedia, 2021: 5637-5645.
|
18 |
SHRIVASTAVA A, GUPTA A, GIRSHICK R. Training region- based object detectors with online hard example mining[C]// Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 761-769.
|
19 |
CHEN L C, PAPANDREOU G, KOKKINOS I, et al. Semantic image segmentation with deep convolutional nets and fully connected CRFs[C]//Proc. of the Internation Conference on Learming Representation, 2015.
|
20 |
CHEN L C , PAPANDREOU G , KOKKINOS I , et al. DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs[J]. IEEE Trans.on Pattern Analysis and Machine Intelligence, 2018, 40 (4): 834- 848.
doi: 10.1109/TPAMI.2017.2699184
|
21 |
CHEN L C, PAPANDREOU G, SCHROFF F, et al. Rethinking atrous convolution for semantic image segmentation[EB/OL]. [2022-05-09]. https://arxiv.org/abs/1706.05587v3
|
22 |
CHEN L C, ZHU Y, PAPANDREOU G, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation[C]//Proc. of the European Conference on Computer Vision, 2018: 801-818.
|
23 |
YU F, KOLTUN V. Multi-scale context aggregation by dilated convolutions[EB/OL]. [2022-05-09]. https://arxiv.org/abs/1511.07122.
|
24 |
李晨瑄, 钱坤, 胥辉旗. 基于深浅层特征融合的舰船要害关键点检测算法[J]. 系统工程与电子技术, 2021, 43 (11): 3239- 3249.
|
|
LI C X , QIAN K , XU H Q . Key-points detection algorithm based on fusion of deep and shallow features for warship's vital part[J]. Systems Engineering and Electronics, 2021, 43 (11): 3239- 3249.
|
25 |
LIN T Y, DOLLÁR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 936-944.
|
26 |
LIU S, QI L, QIN H, et al. Path aggregation network for instance segmentation[C]//Proc. of the Conference on Computer Vision and Pattern Recognition, 2018: 8759-8768.
|
27 |
TAN M, PANG R, LE Q V. EfficientDet: scalable and efficient object detection[C]//Proc. of the Conference on Computer Vision and Pattern Recognition, 2020: 10778-10787.
|
28 |
钱坤, 李晨瑄, 陈美杉, 等. 基于YOLOv5的舰船目标及关键部位检测算法[J]. 系统工程与电子技术, 2022, 44 (6): 1823- 1832.
|
|
QIAN K , LI C X , CHEN M S , et al. Ship target and key parts detection algorithm based on YOLOv5[J]. Systems Engineering and Electronics, 2022, 44 (6): 1823- 1832.
|
29 |
LIN T Y, MAIRE M, BELONGIE S, et al. Microsoft COCO: common objects in context[C]//Proc. of the European Confe-rence on Computer Vision, 2014: 740-755.
|
30 |
CAI Z W, VASCONCELOS N. Cascade R-CNN: delving into high quality object detection[C]//Proc. of the Conference on Computer Vision and Pattern Recognition, 2018: 6154-6162.
|