1 |
宋征宇, 巩庆海, 王聪, 等. 长征运载火箭上升段的自主制导方法及其研究进展[J]. 中国科学: 信息科学, 2021, 51 (10): 1587- 1608.
|
|
SONG Z Y , GONG Q H , WANG C , et al. Review and progress of the autonomous guidance method for Long March launch vehicle ascent flight[J]. Scientia Sinica Informationis, 2021, 51 (10): 1587- 1608.
|
2 |
郭玮林, 鲜勇, 张大巧, 等. 高超声速飞行器助推段弹道快速计算方法[J]. 中国惯性技术学报, 2018, 26 (1): 109- 114.
|
|
GUO W L , XIAN Y , ZHANG D Q , et al. Fast calculation method of booster trajectory for hypersonic vehicle[J]. Journal of Chinese Inertial Technology, 2018, 26 (1): 109- 114.
|
3 |
LU P , SUN H , TSAI B . Closed-loop endoatmo-spheric ascent guidance[J]. Journal of Guidance, Control, and Dynamics, 2013, 26 (2): 283- 294.
|
4 |
MURILLO O, LU P. Fast ascent trajectory optimization for hypersonic air-Breathing vehicles[C]//Proc. of the AIAA Gui-dance, Navigation, and Control Conference, 2010.
|
5 |
LU P , PAN B F . Highly constrained optimal launch ascent guidance[J]. Journal of Guidance, Control, and Dynamics, 2010, 33 (2): 404- 414.
doi: 10.2514/1.45632
|
6 |
LU P, ZHANG L J, SUN H S. Ascent guidance for responsive launch: a fixed-point approach[C]//Proc. of the AIAA Guidance, Navigation, and Control Conference and Exhibit, 2005.
|
7 |
LU B , CUI N G , FU Y , et al. Closed-loop atmospheric ascent guidance based on finite element method[J]. Aircraft Engineering and Aerospace Technology, 2015, 87 (5): 393- 401.
doi: 10.1108/AEAT-02-2014-0021
|
8 |
DUKEMAN G, CALISE A. Enhancements to an atmospheric ascent guidance algorithm[C]//Proc. of the AIAA Guidance, Navigation, and Control Conference and Exhibit, 2003.
|
9 |
DUKEMAN G. Atmospheric ascent guidance for rocket-powered launch vehicles[C]//Proc. of the AIAA Guidance, Navigation, and Control Conference and Exhibit, 2002.
|
10 |
CHENG X M , LI H F , ZHANG R . Efficient ascent trajectory optimization using convex models based on the Newton-Kantorovich/Pse-udospectral approach[J]. Aerospace Science and Technology, 2017, 66, 140- 151.
doi: 10.1016/j.ast.2017.02.023
|
11 |
DUAN H B , LI S T . Artificial bee colony-based direct collocation for reentry trajectory optimization of hypersonic vehicle[J]. IEEE Trans.on Aerospace and Electronic Systems, 2015, 51 (1): 615- 626.
doi: 10.1109/TAES.2014.120654
|
12 |
FU W Z , WANG B , LI X , et al. Ascent trajectory optimization for hypersonic vehicle based on improved chicken swarm optimization[J]. IEEE Access, 2019, 7, 151836- 151850.
doi: 10.1109/ACCESS.2019.2947297
|
13 |
PONTANI M . Particle swarm optimization of ascent trajectories of multistage launch vehicles[J]. Acta Astronautica, 2014, 94 (2): 852- 864.
doi: 10.1016/j.actaastro.2013.09.013
|
14 |
GIRI R, GHOSE D. Differential evolution based ascent phase trajectory optimization for a hypersonic vehicle[C]//Proc. of the International Conference on Swarm, Evolutionary, and Memetic Computing, 2010.
|
15 |
PRASANNA H M, GHOSE D, BHAT M S, et al. Ascent phase trajectory optimization for a hypersonic vehicle using nonlinear programming[C]//Proc. of the International Confe-rence on Computational Science and its Applications, 2005.
|
16 |
SHI W , JING Z L , YANG Y S . Ascent trajectory optimisation for hypersonic vehicles via Gauss pseudospectral method[J]. International Journal of Space Science and Engineering, 2013, 1 (1): 64- 81.
doi: 10.1504/IJSPACESE.2013.051769
|
17 |
YANG S B , CUI T , HAO X Y , et al. Trajectory optimization for a ramjet-powered vehicle in ascent phase via the Gauss pseudospectral method[J]. Aerospace Science and Technology, 2017, 67, 88- 95.
doi: 10.1016/j.ast.2017.04.001
|
18 |
ZHOU J , LEI H M , ZHANG D . Online optimal midcourse trajectory modification algorithm for hypersonic vehicle interceptions[J]. Aerospace Science and Technology, 2017, 63, 266- 277.
doi: 10.1016/j.ast.2016.12.022
|
19 |
ZHANG D , LIU L , WANG Y J . Online ascent phase trajectory optimal guidance algorithm based on pseudospectral method and sensitivity updates[J]. Journal of Navigation, 2015, 68 (6): 1056- 1074.
doi: 10.1017/S0373463315000326
|
20 |
YANG L , ZHOU H , CHEN W C . Application of linear Gauss pseudospectral method in model predictive control[J]. Acta Astronautica, 2014, 96, 175- 187.
doi: 10.1016/j.actaastro.2013.11.038
|
21 |
YANG L , YANG J , CHEN W C , et al. Entry guidance with no-fly zone avoidance using linear pseudospectral model predictive control[J]. IEEE Access, 2019, 7, 98589- 98602.
doi: 10.1109/ACCESS.2019.2927995
|
22 |
YANG L , LIU X M , CHEN W C , et al. Autonomous entry gui-dance using linear pseudospectral model predictive control[J]. Aero-space Science and Technology, 2018, 80, 38- 55.
doi: 10.1016/j.ast.2018.06.031
|
23 |
YANG L , CHEN W C , LIU X M , et al. Robust entry guidance using multi-segment linear pseudospectral model predictive control[J]. Journal of Systems Engineering and Electronics, 2017, 28 (1): 103- 125.
doi: 10.21629/JSEE.2017.01.13
|
24 |
ZARCHAN P . Tactical and strategic missile guidance[M]. 6th ed Reston, Virginia: AIAA, 2012.
|
25 |
ZHAO S L , YANG L , CHEN W C . Endoatmospheric ascent optimal guidance with analytical nonlinear trajectory prediction[J]. International Journal of Aerospace Engineering, 2022, 2022, 5729335.
|
26 |
陈思远. 助推-滑翔导弹弹道优化及制导方法研究[D]. 北京: 北京理工大学, 2016.
|
|
CHEN S Y. Study on trajectory optimization and guidance method for boost-glide missil e[D]. Beijing: Beijing Institute of Technology, 2016.
|