| 1 | DAI Z N, ZHANG X G, BAI Y C. A method of high accuracy velocity measurement for LFM radar[C]//Proc. of the International Conference on Wireless Communication & Signal Processing, 2015. | 
																													
																						| 2 | ZHENG J B ,  SU T ,  ZHU W T , et al.  Radar high-speed target detection based on the scaled inverse fourier transform[J]. IEEE Journal of Selected Topics in Applied Earth Observations & Remote Sensing, 2015, 8 (3): 1108- 1119. | 
																													
																						| 3 | CHEN X L, GUAN J, ZHAO Z J, et al. Radar maneuvering target detection based on scaling processing and Radon-Fourier transform[C]//Proc. of the IET Radar Conference, 2015. | 
																													
																						| 4 | ZHENG J B ,  SU T ,  LIU H W , et al.  Radar high-speed target detection based on the frequency-domain deramp-keystone transform[J]. IEEE Journal of Selected Topics in Applied Earth Observations & Remote Sensing, 2016, 9 (1): 285- 294. | 
																													
																						| 5 | CHEN V C ,  LI F ,  HO S S , et al.  Micro-Doppler effect in radar: phenomenon, model, and simulation study[J]. IEEE Trans.on Aerospace & Electronic Systems, 2006, 42 (1): 2- 21. | 
																													
																						| 6 | XU G ,  XING M D ,  YANG L , et al.  Joint approach of translational and rotational phase error corrections for high-resolution inverse synthetic aperture radar imaging using minimum-entropy[J]. IET Radar Sonar & Navigation, 2016, 10 (3): 586- 594. | 
																													
																						| 7 | ZHOU W ,  YE C M ,  JIN R J , et al.  ISAR imaging of targets with rotating parts based on robust principal component analysis[J]. IET Radar Sonar & Navigation, 2017, 11 (4): 563- 569. | 
																													
																						| 8 | 包云霞, 毛二可, 何佩琨.  基于一维高分辨距离像的相关测速补偿算法[J]. 北京理工大学学报, 2008, 28 (2): 160- 163. | 
																													
																						|  | BAO Y X ,  MAO E K ,  HE P K .  Motion compensation method based on one-dimension high resolution range profile cross-correlation[J]. Transactions of Beijing Institute of Technology, 2008, 28 (2): 160- 163. | 
																													
																						| 9 | PENG S B ,  XU J ,  PENG Y N , et al.  Parametric inverse synthetic aperture radar manoeuvring target motion compensation based on particle swarm optimiser[J]. IET Radar Sonar & Navigation, 2011, 5 (3): 305- 314. | 
																													
																						| 10 | CHEN C C ,  ANDREWS H C .  Target-motion-induced radar imaging[J]. IEEE Trans.on Aerospace & Electronic Systems, 1980, 16 (1): 2- 14. | 
																													
																						| 11 | 保铮, 邢孟道, 王彤.  雷达成像技术[M]. 北京: 电子工业出版社, 2005. | 
																													
																						|  | BAO Z ,  XING M D ,  WANG D .  Radar imaging technology[M]. Beijing: Publishing House of Electronic Industry, 2005. | 
																													
																						| 12 | CHEN V C .  The micro-Doppler effect in radar[M]. America: Artech House, 2011. | 
																													
																						| 13 | WANG C, WANG J, ZHANG X D. Automatic radar waveform recognition based on time-frequency analysis and convolutional neural network[C]//Proc. of the IEEE International Conference on Acoustics, 2017: 2437-2441. | 
																													
																						| 14 | REN M Q, TIAN Y H. Radar signal cognition based time-frequency transform and high order spectra analysis[C]//Proc. of the IEEE International Conference on Signal Processing, Communications and Computing, 2017. | 
																													
																						| 15 | CEXUS J C, TOUMI A. Radar target recognition using time-frequency analysis and polar transformation[C]//Proc. of the 4th International Conference on Advanced Technologies for Signal and Image Processing, 2018. | 
																													
																						| 16 | REN K ,  DU L ,  WANG B S , et al.  Statistical compressive sensing and feature extraction of time-frequency spectrum from narrowband radar[J]. IEEE Trans.on Aerospace & Electronic Systems, 2020, 56 (1): 326- 342. | 
																													
																						| 17 | WANG Y ,  WANG Z F ,  ZHAO B , et al.  Compensation for high-frequency vibration of platform in SAR imaging based on adaptive chirplet decomposition[J]. IEEE Geoscience & Remote Sensing Letters, 2016, 13 (6): 792- 795. | 
																													
																						| 18 | CHEN W J, SHENG J, YUAN L, et al. A method separating echo by adaptive chirplet signal decomposition based on FRFT[C]//Proc. of the 11th International Symposium on Antennas, Propagation and EM Theory, 2016: 869-872. | 
																													
																						| 19 | YANG B Y ,  YANG Z B ,  SUN R B , et al.  Fast nonlinear Chirplet dictionary-based sparse decomposition for rotating machi-nery fault diagnosis under nonstationary conditions[J]. IEEE Trans.on Instrumentation and Measurement, 2019, 68 (12): 4736- 4745. doi: 10.1109/TIM.2019.2900886
 | 
																													
																						| 20 | PUKHOVA V M, STEPANOVA M S. Up-Chirplet and down-Chirplet transforms of non-stationary signals[C]//Proc. of the IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering, 2019: 1221-1225. | 
																													
																						| 21 | 肖涛, 汤子跃, 黄强辉.  一种基于滑窗相关的回波包络对齐方法[J]. 空军雷达学院学报, 2006, 20 (4): 276- 278. | 
																													
																						|  | XIAO T ,  TANG Z Y ,  HUANG Q H .  A method of echo range alignment based on sliding-window correlation[J]. Journal of Air Force Radar Academy, 2006, 20 (4): 276- 278. | 
																													
																						| 22 | VEHMAS R, JYLHA J. Improving the estimation accuracy and computational efficiency of ISAR range alignment[C]//Proc. of the 14th European Radar Conference, 2017: 13-16. | 
																													
																						| 23 | LIU Y, WANG L, BI G A, et al. Novel ISAR range alignment via minimizing the entropy of the sum range profile[C]//Proc. of the 21st International Radar Symposium, 2020: 135-138. | 
																													
																						| 24 | 王勇, 姜义成.  基于自适应Chirplet分解的舰船目标ISAR成像[J]. 电子与信息学报, 2006, 28 (6): 982- 984. | 
																													
																						|  | WANG Y ,  JIANG Y C .  The ISAR imaging of ships based on adaptive chirplet decomposition[J]. Journal of Electronics and Information Technology, 2006, 28 (6): 982- 984. | 
																													
																						| 25 | LU H, ZHANG S S, KONG L K. A new WVD algorithm jointed CLEAN technique in ISAR imaging[C]//Proc. of the 2nd International Conference on Intelligent Systems Design and Engineering Application, 2012: 69-72. | 
																													
																						| 26 | LI J ,  STOICA P .  Efficient mixed-spectrum estimation with applications to target feature extraction[J]. IEEE Trans.on Signal Processing, 1996, 44 (2): 281- 295. doi: 10.1109/78.485924
 | 
																													
																						| 27 | YAO Y, WU L N. A new method of velocity measurement based on CRT algorithm in dual-frequency pulse Doppler radar[C]//Proc. of the National Doctoral Academic Forum on Information and Communications Technology, 2013. |