1 |
CHATZIANTONIOU E , ALLEN B , VELISAVLJEVIC V , et al. Energy detection based spectrum sensing over two-wave with diffuse power fading channels[J]. IEEE Trans.on Vehicular Technology, 2016, 66 (1): 868- 874.
|
2 |
HAYKIN S . Cognitive radio: brain-empowered wireless communications[J]. IEEE Journal on Selected Areas in Communications, 2005, 23 (2): 201- 220.
doi: 10.1109/JSAC.2004.839380
|
3 |
TIAN Z, GIANNAKIS G B. Compressed sensing for wideband cognitive radios[C]//Proc.of the IEEE International Conference on Acoustics, Speech and Signal Processing, 2007.
|
4 |
夏志, 陈建忠, 牛英滔, 等. 无线通信中跟踪干扰信号检测方法及检测性能[J]. 太赫兹科学与电子信息学报, 2018, 16 (6): 989- 996.
|
|
XIA Z , CHEN J Z , NIU Y T , et al. Performance analysis of a detection method for follower jamming in wireless communication[J]. Journal of Terahertz Science and Electronic Information Technology, 2018, 16 (6): 989- 996.
|
5 |
韩晨, 牛英滔, 夏志, 等. 线性扫频干扰检测算法及抗干扰方法研究[J]. 计算机应用研究, 2020, 37 (1): 267- 270, 274.
|
|
HAN C , NIU Y T , XIA Z , et al. Detection algorithm and anti-jamming method for linear sweeping jamming with low complexity[J]. Application Research of Computers, 2020, 37 (1): 267- 270, 274.
|
6 |
DANDAWATE A V , GIANNAKIS G B . Statistical tests for presence of cyclostationarity[J]. IEEE Trans.on Signal Processing, 1994, 42 (9): 2355- 2369.
doi: 10.1109/78.317857
|
7 |
ÖNER M , JONDRAL F . Air interface identification for software radio systems[J]. AEU-International Journal of Electronics and Communications, 2007, 61 (2): 104- 117.
doi: 10.1016/j.aeue.2006.03.005
|
8 |
GARDNER W A . Signal interception: a unifying theoretical framework for feature detection[J]. IEEE Trans.on Communications, 1988, 36 (8): 897- 906.
doi: 10.1109/26.3769
|
9 |
GARDNER W A , SPOONER C M . Signal interception: performance advantages of cyclic-feature detectors[J]. IEEE Trans.on Communications, 1992, 40 (1): 149- 159.
doi: 10.1109/26.126716
|
10 |
CHOPRA R , GHOSH D , MEHRA D K . Spectrum sensing for cognitive radios based on space-time FRESH filtering[J]. IEEE Trans.on Wireless Communications, 2014, 13 (7): 3903- 3913.
doi: 10.1109/TWC.2014.2314125
|
11 |
GHOSH D, MEHRA D K. Cooperative spectrum sensing for cognitive radios using jointly adaptive FRESH filters[C]//Proc.of the 21st National Conference on Communications, 2015.
|
12 |
SAGGAR H , MEHRA D K . Cyclostationary spectrum sensing in cognitive radios using FRESH filters[J]. Journal of the American Dietetic Association, 2013, 49 (3): 211- 215.
|
13 |
CARRICK M D. Cyclostationary methods for communication and signal detection under interference[D]. Blacksburg: Virginia Polytechnic Institute and State University, 2018.
|
14 |
GARDNER W A , NAPOLITANO A , PAURA L . Cyclostationarity: half a century of research[J]. Signal Processing, 2006, 86 (4): 639- 697.
|
15 |
FERRARA E . Frequency-domain implementations of periodically time-varying filters[J]. IEEE Trans.on Acoustics, Speech, and Signal Processing, 1985, 33 (4): 883- 892.
doi: 10.1109/TASSP.1985.1164633
|
16 |
CHEN X , HARRIS F J , VENOSA E , et al. Non-maximally decimated analysis/synthesis filter banks: applications in wideband digital filtering[J]. IEEE Trans.on Signal Processing, 2013, 62 (4): 852- 867.
|
17 |
SHLEZINGER N , TODORS K , DABORA R . Adaptive filtering based on time-averaged MSE for cyclostationary signals[J]. IEEE Trans.on Communications, 2017, 65 (4): 1746- 1761.
doi: 10.1109/TCOMM.2017.2655526
|
18 |
OJEDA O A Y , GRAJAL J . Adaptive FRESH filters for compensation of cycle-frequency errors[J]. IEEE Trans.on Signal Processing, 2009, 58 (1): 1- 10.
|
19 |
SHLEZINGER N, TODORS K, DABORA R. Adaptive LMS-type filter for cyclostationary signals[C]//Proc.of the International Symposium on Wireless Communications Systems, 2016.
|
20 |
NAPOLITANO A . Cyclostationary processes and time series: theory, applications, and generalizations[M]. London: Academic Press, 2019: 22- 27.
|
21 |
NAPOLITANO A . Estimation of second-order cross-moments of generalized almost-cyclostationary processes[J]. IEEE Trans.on Information Theory, 2007, 53 (6): 2204- 2228.
doi: 10.1109/TIT.2007.896868
|