1 |
DISTIL N. Bad Bot Report 2020: bad bots strike back[EB/OL]. [2020-10-06]. https://www.imperva.com/resources/resource-library/reports/2020-bad-bot-report/.
|
2 |
KHRAISAT A , GONDAL I , VAMPLEW P , et al. Survey of intrusion detection systems: techniques, datasets and challenges[J]. Cybersecurity, 2019, 2 (1): 1- 22.
doi: 10.1186/s42400-018-0018-3
|
3 |
WANG Y , MENG W Z , LI W J , et al. Adaptive machine learning-based alarm reduction via edge computing for distributed intrusion detection systems[J]. Concurrency and Computation: Practice and Experience, 2019, 31 (19): e5101.
|
4 |
ZHANG Q , YANG L T , CHEN Z , et al. A survey on deep learning for big data[J]. Information Fusion, 2018, 42, 146- 157.
doi: 10.1016/j.inffus.2017.10.006
|
5 |
ATHMAJA S, HANUMANTHAPPA M, KAVITHA V. A survey of machine learning algorithms for big data analytics[C]//Proc. of the IEEE International Conference on Innovations in Information, Embedded and Communication Systems, 2017.
|
6 |
LI H . Deep learning for natural language processing: advantages and challenges[J]. National Science Review, 2018, 5 (1): 24- 26.
doi: 10.1093/nsr/nwx110
|
7 |
IBRAHIM M S, VAHDAT A, RANJBAR M, et al. Semi-supervised semantic image segmentation with self-correcting networks[C]//Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020.
|
8 |
TAN M, PANG R, LE Q V. Efficientdet: scalable and efficient object detection[C]//Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020.
|
9 |
SHONE N , NGOC T N , PHAI V D , et al. A deep learning approach to network intrusion detection[J]. IEEE Trans.on Emerging Topics in Computational Intelligence, 2018, 2 (1): 41- 50.
doi: 10.1109/TETCI.2017.2772792
|
10 |
AN X S , LYU X , ZHOU X W , et al. Sample selected extreme learning machine based intrusion detection in fog computing and MEC[J]. Wireless Communications and Mobile Computing, 2018,
doi: 10.1155/2018/7472095
|
11 |
李元兵, 房鼎益, 吴晓南, 等. 基于神经网络的异常入侵检测系统[J]. 系统工程与电子技术, 2005, 27 (9): 1648- 1651.
doi: 10.3321/j.issn:1001-506X.2005.09.042
|
|
LI Y B , FANG D Y , WU X N , et al. Anomaly intrusion detection system based on neural network[J]. Systems Engineering and Electronics, 2005, 27 (9): 1648- 1651.
doi: 10.3321/j.issn:1001-506X.2005.09.042
|
12 |
KIM J, KIM J, THU H L T, et al. Long short term memory recurrent neural network classifier for intrusion detection[C]//Proc. of the IEEE International Conference on Platform Technology and Service, 2016.
|
13 |
PUTCHALA M K. Deep learning approach for intrusion detection system (IDS) in the Internet of things (IoT) network using gated recurrent neural networks(GRU)[D]. Dayton: Wright State University, 2017.
|
14 |
高妮, 高岭, 贺毅岳. 面向入侵检测系统的Deep Belief Nets模型[J]. 系统工程与电子技术, 2016, 38 (9): 2201- 2207.
|
|
GAO N , GAO L , HE Y Y . Deep belief nets model oriented to intrusion detection system[J]. Systems Engineering and Electronics, 2016, 38 (9): 2201- 2207.
|
15 |
AYGUN R C, YAVUZ A G. Network anomaly detection with stochastically improved auto encoder based models[C]//Proc. of the IEEE 4th International Conference on Cyber Security and Cloud Computing, 2017.
|
16 |
饶鲜, 杨绍全, 魏青, 等. 基于熵的入侵检测特征参数选择[J]. 系统工程与电子技术, 2006, 28 (4): 599- 601.
doi: 10.3321/j.issn:1001-506X.2006.04.029
|
|
RAO X , YANG S Q , WEI Q , et al. Selection intrusion detection parameters using entropy[J]. Systems Engineering and Electronics, 2006, 28 (4): 599- 601.
doi: 10.3321/j.issn:1001-506X.2006.04.029
|
17 |
HOOGE L , WAUTERS T , VOLCKAERT B , et al. Inter-dataset generalization strength of supervised machine learning methods for intrusion detection[J]. Journal of Information Security and Applications, 2020, 54, 102564.
doi: 10.1016/j.jisa.2020.102564
|
18 |
KIM J , KIM J , KIM H , et al. CNN-based network intrusion detection against denial-of-service attacks[J]. Electronics, 2020, 9 (6): 916.
doi: 10.3390/electronics9060916
|
19 |
LIN P, YE K, XU C Z. Dynamic network anomaly detection system by using deep learning techniques[C]//Proc. of the International Conference on Cloud Computing, 2019.
|
20 |
WANG W , SHENG Y Q , WANG J L , et al. HAST-IDS: learning hierarchical spatial-temporal features using deep neural networks to improve intrusion detection[J]. IEEE Access, 2018, 6, 1792- 1806.
doi: 10.1109/ACCESS.2017.2780250
|
21 |
GOOCH J W . Pearson correlation coefficient[M]. Atlanta: Encyclopedic Dictionary of Polymers, 2011.
|
22 |
SHARAFALDIN I, LASHKARI A H, GHORBANI A A. Toward generating a new intrusion detection dataset and intrusion traffic characterization[C]//Proc. of the International Confe-rence on Information Systems Security and Privacy, 2018.
|
23 |
Canadian Institute for Cybersecurity. A realistic cyber defense dataset (CSE-CIC-IDS2018)[EB/OL]. [2021-05-06]. https://registry.opendata.aws/cse-cic-ids2018/.
|
24 |
GHARIB A, SHARAFALDIN I, LASHKARI A H, et al. An evaluation framework for intrusion detection dataset[C]//Proc. of the IEEE International Conference on Information Scie-nce and Security, 2017.
|
25 |
CAI J , LUO J W , WANG S L , et al. Feature selection in machine learning: a new perspective[J]. Neurocomputing, 2018, 300 (26): 70- 79.
|
26 |
SAPUTRA F A, MASPUTRA M F, SYARIF I, et al. Botnet detection in network system through hybrid low variance filter, correlation filter and supervised mining process[C]//Proc. of the 13th International Conference on Digital Information Mana-gement, 2018.
|
27 |
COHEN-ADDAD V, KANADE V, MALLMANN T F, et al. Hierarchical clustering: objective functions and algorithms[C]//Proc. of the 29th Annual ACM-SIAM Symposium on Discrete Algorithms, 2018.
|
28 |
LUJAN-MORENO G A , HOWARD P R , ROJAS O G , et al. Design of experiments and response surface methodology to tune machine learning hyper parameters with a random forest case-study[J]. Expert Systems with Applications, 2018, 109, 195- 205.
doi: 10.1016/j.eswa.2018.05.024
|
29 |
PROBST P , WRIGHT M N , BOULESTEIX A L . Hyperparameters and tuning strategies for random forest[J]. Wiley Interdiplinary Reviews: Data Mining and Knowledge Discovery, 2019, 9 (3): e1301.
|
30 |
BERGSTRA J , BARDENET R , BENGIO Y , et al. Algorithms for hyper-parameter optimization[J]. Advances in Neural Information Processing Systems, 2011, 11, 2546- 2554.
|