系统工程与电子技术 ›› 2023, Vol. 45 ›› Issue (7): 2086-2097.doi: 10.12305/j.issn.1001-506X.2023.07.19
徐选华, 肖婷
收稿日期:
2021-09-17
出版日期:
2023-06-30
发布日期:
2023-07-11
通讯作者:
肖婷
作者简介:
徐选华(1963—), 男, 教授, 博士, 主要研究方向为复杂大群体决策理论与方法、大数据智能决策方法、信息系统与决策支持系统、应急管理与风险分析、工程管理基金资助:
Xuanhua XU, Ting XIAO
Received:
2021-09-17
Online:
2023-06-30
Published:
2023-07-11
Contact:
Ting XIAO
摘要:
针对大群体应急决策中决策参考信息不足和共识达成困难的问题, 构建了一种由社会网络行为数据驱动的大群体应急决策共识模型。首先, 针对决策参考信息不足的问题, 提出基于公众行为大数据分析的属性挖掘方法。该方法将公众关注度作为数据聚类标准, 挖掘社交媒体数据中的公众关注主题和权重,将其作为决策参考信息, 应用到大群体应急决策过程。其次, 针对大群体共识达成困难的问题, 建立了基于信任-相似分析的决策共识模型。该模型在专家社会网络聚类的基础上, 引入自信系数和保留系数, 设计共识反馈规则以调整专家偏好, 提高了群体共识水平。最后, 通过公共安全事件案例验证了所提模型的可行性和合理性。
中图分类号:
徐选华, 肖婷. 社会网络行为数据驱动的大群体应急决策共识模型[J]. 系统工程与电子技术, 2023, 45(7): 2086-2097.
Xuanhua XU, Ting XIAO. Consensus model for large group emergency decision-making driven by social network behavior data[J]. Systems Engineering and Electronics, 2023, 45(7): 2086-2097.
表6
专家的权重信息"
专家 | Din | Dout | C(ei) | wi | 专家 | Din | Dout | C(ei) | wi | |
e1 | 0.029 8 | 0.017 9 | 0.842 1 | 0.164 | e2 | 0.029 8 | 0.011 9 | 0.789 5 | 0.140 | |
e3 | 0.029 8 | 0.023 8 | 0.868 4 | 0.260 | e4 | 0.029 8 | 0.029 7 | 0.815 8 | 0.275 | |
e5 | 0.035 7 | 0.023 8 | 0.763 2 | 0.176 | e6 | 0.017 9 | 0.029 7 | 0.924 8 | 0.261 | |
e7 | 0.029 8 | 0.005 9 | 0.789 5 | 0.205 | e8 | 0.035 7 | 0.029 7 | 0.763 2 | 0.191 | |
e9 | 0.017 9 | 0.047 6 | 0.789 5 | 0.203 | e10 | 0.023 8 | 0.023 8 | 0.815 8 | 0.257 | |
e11 | 0.023 8 | 0.047 6 | 0.952 6 | 0.194 | e12 | 0.017 9 | 0.023 8 | 0.736 9 | 0.156 | |
e13 | 0.041 7 | 0.005 9 | 0.842 1 | 0.237 | e14 | 0.017 9 | 0.035 7 | 0.868 4 | 0.260 | |
e15 | 0.017 9 | 0.023 8 | 0.736 9 | 0.245 | e16 | 0.029 8 | 0.023 8 | 0.763 2 | 0.186 | |
e17 | 0.023 8 | 0.017 8 | 0.763 2 | 0.151 | e18 | 0.023 8 | 0.029 7 | 0.868 4 | 0.169 | |
e19 | 0.006 0 | 0.029 8 | 0.842 1 | 0.141 | e20 | 0.017 9 | 0.017 8 | 0.868 4 | 0.130 |
表7
反馈调节迭代结果"
轮次 | CL(C1) | CL(C2) | CL(C3) | CL(C4) | GCL | 调节聚集 | 调节系数 |
0 | 0.893 | 0.897 | 0.919 | 0.900 | 0.902 | C1 | γ3=0.416, γ4=0.433, γ7=0.403, γ14=0.370 |
1 | 0.924 | 0.902 | 0.918 | 0.903 | 0.912 | C2 | γ2=0.408, γ5=0.394, γ8=0.338, γ11=0.376, γ18=0.349, γ20=0.409 |
2 | 0.938 | 0.944 | 0.925 | 0.921 | 0.932 | C4 | γ1=0.388, γ9=0.234, γ12=0.408, γ16=0.403, γ17=0.398, γ19=0.292 |
3 | 0.945 | 0.949 | 0.924 | 0.935 | 0.938 | C3 | γ6=0.365, γ4=0.365, γ13=0.414, γ15=0.398 |
4 | 0.948 | 0.949 | 0.967 | 0.941 | 0.951 | - | - |
表11
单独分析对比结果"
考虑因素 | 调整次数 | 共识水平 | 共识平均增长速度/% | 方案排序 |
信任关系 | 6 | GCL0=0.902;GCL1=0.909;GCL2=0.922;GCL3=0.936;GCL4=0.940;GCL5=0.946;GCL6=0.953 | 0.85 | x3 |
相似关系 | 5 | GCL0=0.902;GCL1=0.910;GCL2=0.923;GCL3=0.936;GCL4=0.946;GCL5=0.950 | 0.86 | x3 |
信任-相似 | 4 | GCL0=0.902;GCL1=0.912;GCL2=0.932;GCL3=0.938;GCL4=0.951 | 1.19 | x3 |
1 | 徐选华. 大数据环境下复杂大群体决策理论方法及应用[M]. 北京: 科学出版社, 2020. |
XU X H . Complex large group decision making: theory, methods and applications based on big data analytics[M]. Beijing: Science Press, 2020. | |
2 | COSGRAVE J . Decision making in emergencies[J]. Disaster Prevention and Management, 1996, 4 (5): 28- 35. |
3 |
WAN S P , CHEN Z H , DONG J Y . Bi-objective trapezoidal fuzzy mixed integer linear program-based distribution center location decision for large-scale emergencies[J]. Applied Soft Computing, 2021, 110, 107757.
doi: 10.1016/j.asoc.2021.107757 |
4 |
ZHONG X Y , XU X H . Clustering-based method for large group decision making with hesitant fuzzy linguistic information: Integrating correlation and consensus[J]. Applied Soft Computing, 2020, 87, 105973.
doi: 10.1016/j.asoc.2019.105973 |
5 |
WAN S P , YAN J , DONG J Y . Personalized individual semantics based consensus reaching process for large-scale group decision making with probabilistic linguistic preference relations and application to COVID-19 surveillance[J]. Expert Systems with Applications, 2022, 191, 116328.
doi: 10.1016/j.eswa.2021.116328 |
6 |
XU X H , YIN X P , CHEN X H . A large-group emergency risk decision method based on data mining of public attribute prefe-rences[J]. Knowledge-Based Systems, 2019, 163, 495- 509.
doi: 10.1016/j.knosys.2018.09.010 |
7 | COE A , PAQUET G , ROY J . E-governance and smart communities[J]. Social Science Computer Review, 2001, 1 (19): 80- 93. |
8 |
SIMON T , GOLDBERG A , ADINI B . Socializing in emergencies-a review of the use of social media in emergency situations[J]. International Journal of Information Management, 2015, 35 (5): 609- 619.
doi: 10.1016/j.ijinfomgt.2015.07.001 |
9 | 杨勤. 两种群体智慧效应影响因子分析[J]. 中国科技信息, 2021, 4 (8): 23- 26. |
YANG Q . Analysis of influencing factors of two kinds of group wisdom effect[J]. China Science and Technology Information, 2021, 4 (8): 23- 26. | |
10 | 魏静静. 社交媒体下的群体智慧决策一致性判定研究[D]. 郑州: 郑州大学, 2020. |
WEI J J. Research on judgment consistency of group intelligence decision under social media[D]. Zhengzhou: Zhengzhou University, 2020. | |
11 | LABELLA A , LIU Y , RODRIGUEZ R M , et al. Analyzing the performance of classical consensus models in large scale group decision making: a comparative study[J]. Applied Soft Computing, 2017, 67, 677- 690. |
12 |
DU Z J , YU S M , LUO H Y , et al. Consensus convergence in large-group social network environment: coordination between trust relationship and opinion similarity[J]. Knowledge-based Systems, 2021, 217, 106828.
doi: 10.1016/j.knosys.2021.106828 |
13 |
ZHOU X Y , JI F P , WANG L Q , et al. Particle swarm optimization for trust relationship based social network group decision making under a probabilistic linguistic environment[J]. Knowledge-based Systems, 2020, 200, 105999.
doi: 10.1016/j.knosys.2020.105999 |
14 |
LIU B S , ZHOU Q , DING R X , et al. Large-scale group decision making model based on social network analysis: trust relationship-based conflict detection and elimination[J]. European Journal of Operational Research, 2019, 275 (2): 737- 754.
doi: 10.1016/j.ejor.2018.11.075 |
15 | YOON S , ODLUM M , BROADWELL P , et al. Application of social network analysis of covid-19 related tweets mentioning cannabis and opioids to gain insights for drug abuse research[J]. Studies in Health Technology and Informatics, 2020, 272, 5- 8. |
16 | POHL D , BOUCHACHIA A , HELLWAGNER H . Online indexing and clustering of social media data for emergency management[J]. Neurocomputing, 2016, 200, 168- 179. |
17 |
KRYVASHEYEU Y , CHEN H , OBRADOVICH N , et al. Rapid assessment of disaster damage using social media activity[J]. Science Advances, 2016, 2 (3): e1500779.
doi: 10.1126/sciadv.1500779 |
18 |
BAI H , YU G . A Weibo-based approach to disaster informa-tics: incidents monitor in post-disaster situation via Weibo text negative sentiment analysis[J]. Natural Hazards, 2016, 83 (2): 1177- 1196.
doi: 10.1007/s11069-016-2370-5 |
19 | 徐选华, 杨欣, 陈晓红. 基于UGC大数据挖掘的大群体两阶段风险性应急决策方法[J]. 运筹与管理, 2019, 28 (12): 35- 45. |
XU X H , YANG X , CHEN X H . A method of two-stage risky emergency decision for large group based on the UGC big data mining[J]. Operations Research and Management Science, 2019, 28 (12): 35- 45. | |
20 | FRIEDKIN N E , JOHNSEN E C . Social influence and opinions[J]. Journal of Mathematical Sociology, 2010, 15 (3/4): 203- 206. |
21 |
DONG Y C , ZHAN M , KOU G , et al. A survey on the fusion process in opinion dynamics[J]. Information Fusion, 2018, 43, 57- 65.
doi: 10.1016/j.inffus.2017.11.009 |
22 |
LABELLA Á , LIU Y , RODRÍGUEZ R M , et al. Analyzing the performance of classical consensus models in large scale group decision making: a comparative study[J]. Applied Soft Computing, 2018, 67, 677- 690.
doi: 10.1016/j.asoc.2017.05.045 |
23 | XU X H , ZHANG Q H , CHEN X H . Consensus-based non-cooperative behaviors management in large-group emergency decision-making considering experts'trust relations and preference risks[J]. Knowledge-based Systems, 2019, 190, 10508- 10549. |
24 |
AHLIM W S A W , KAMIS N H , AHMAD S A S , et al. Similarity-trust network for clustering-based consensus group decision-making model[J]. International Journal of Intelligent Systems, 2022, 37 (4): 2758- 2773.
doi: 10.1002/int.22610 |
25 |
WU J , DAI L F , CHICLANA F , et al. A minimum adjustment cost feedback mechanism based consensus model for group decision making under social network with distributed linguistic trust[J]. Information Fusion, 2018, 41, 232- 242.
doi: 10.1016/j.inffus.2017.09.012 |
26 |
DU Z J , LUO H Y , LIN X D , et al. A trust-similarity analysis-based clustering method for large-scale group decision-making under a social network[J]. Information Fusion, 2020, 63, 13- 29.
doi: 10.1016/j.inffus.2020.05.004 |
27 |
WU T , LIU X W , GONG Z W , et al. The minimum cost consensus model considering the implicit trust of opinions similarities in social network group decision-making[J]. International Journal of Intelligent Systems, 2020, 35 (3): 470- 493.
doi: 10.1002/int.22214 |
28 | 陈晓红, 张威威, 徐选华. 社会网络环境下基于犹豫度和一致性的大群体决策方法[J]. 系统工程理论与实践, 2020, 40 (5): 1178- 1192. |
CHEN X H , ZHANG W W , XU X H . Large group decision-making method based on hesitation and consistency under social network context[J]. Systems Engineering-Theory & Practice, 2020, 40 (5): 1178- 1192. | |
29 |
ATANASSOY K T . Intuitionistic fuzzy sets[J]. Fuzzy Sets and Systems, 1986, 20 (1): 87- 96.
doi: 10.1016/S0165-0114(86)80034-3 |
30 |
XU Z . Intuitionistic fuzzy aggregation operators[J]. IEEE Trans.on Fuzzy Systems, 2007, 15 (6): 1179- 1187.
doi: 10.1109/TFUZZ.2006.890678 |
31 |
LIU B S , SHEN Y H , ZHANG W , et al. An interval-valued intui-tionistic fuzzy principal component analysis model-based method for complex multi-attribute large-group decision-making[J]. European Journal of Operational Research, 2015, 245 (1): 209- 225.
doi: 10.1016/j.ejor.2015.02.025 |
32 |
XU Z S . A deviation-based approach to intuitionistic fuzzy multiple attribute group decision making[J]. Group Decision and Negotiation, 2010, 19 (1): 57- 76.
doi: 10.1007/s10726-009-9164-z |
33 | 徐选华, 张前辉. 社会网络环境下基于共识的风险性大群体应急决策非合作行为管理研究[J]. 控制与决策, 2020, 35 (10): 2497- 2506. |
XU X H , ZHANG Q H . Management of non-cooperative behavior in consensus-based large group emergency decision-making in social network environment[J]. Control and Decision, 2020, 35 (10): 2497- 2506. | |
34 | 王凯. 社交媒体用户交互行为建模与推荐应用研究[D]. 武汉: 武汉大学, 2019. |
WANF K. Research on social media user interaction behavior modeling and recommendation application[D]. Wuhan: Wuhan University, 2019. | |
35 |
JAIN A K . Data clustering: 50 years beyond K-means[J]. Pattern Recognition Letters, 2010, 31 (8): 651- 666.
doi: 10.1016/j.patrec.2009.09.011 |
36 | SALTON G , BUCKLEY C . Term-weighting approaches in automatic text retrieval[J]. Information Processing & AMP: Management, 1988, 24 (5): 513- 523. |
37 |
HENGJIE Z , ZHAO S H , GANG K , et al. An overview on feedback mechanisms with minimum adjustment or cost in consensus reaching in group decision making: research paradigms and challenges[J]. Information Fusion, 2020, 60, 65- 79.
doi: 10.1016/j.inffus.2020.03.001 |
38 | 徐选华, 吴慧迪. 基于改进云模型的语言偏好信息多属性大群体决策方法[J]. 管理工程学报, 2018, 32 (1): 117- 125. |
XU X H , WU H D . Multi-attribute large group decision-making method for language preference information based on improved cloud model[J]. Journal of Industrial Engineering and Engineering Management, 2018, 32 (1): 117- 125. | |
39 |
DONG Y C , ZHA Q B , ZHANG H J , et al. Consensus reach-ing in social network group decision making: research paradigms and challenges[J]. Knowledge-based Systems, 2018, 162, 3- 13.
doi: 10.1016/j.knosys.2018.06.036 |
40 | BLONDEL V D , GUILLAUME J , LAMBIOTTE R , et al. Fast unfolding of communities in large networks[J]. Journal of Statistical Mechanics: Theory and Experiment, 2008, 2008 (10): 105- 118. |
41 |
LIU X , XU Y J , MONTES R , et al. Social network group decision making: managing self-confidence-based consensus models with the dynamic importance degree of experts and trust-based feedback mechanism[J]. Information Sciences, 2019, 505, 215- 232.
doi: 10.1016/j.ins.2019.07.050 |
42 | KAMIS N H , CHICLANA F , LEVESLEY J . Preference similarity network structural equivalence clustering based consensus group decision making model[J]. Applied Soft Computing, 2018, 67, 706- 720. |
43 | 吴志彬, 徐雷. 两种基于个体偏好集结的多属性群决策共识方法[J]. 控制与决策, 2014, 29 (3): 487- 493. |
WU Z B , XU L . Two consensus approaches for multiple attri-bute group decision making based on aggregating individual preferences[J]. Control and Decision, 2014, 29 (3): 487- 493. |
[1] | 白静, 陈业华, 石蕊, 张亚明. 基于概率语言赋权交叉熵信度分配的应急决策[J]. 系统工程与电子技术, 2021, 43(2): 476-486. |
[2] | 陈业华, 王浩, 宋之杰. 基于效用风险熵的突发事件应急方案动态调整[J]. 系统工程与电子技术, 2016, 38(9): 2093-2098. |
[3] | 董沛武, 刘世国, 杨玫, 王军梅. 物元结构应急响应决策模型研究[J]. 系统工程与电子技术, 2016, 38(12): 2799-2806. |
[4] | 徐选华, 万奇锋. 一种连续型随机多属性大群体决策方法[J]. Journal of Systems Engineering and Electronics, 2012, 34(10): 2084-2089. |
[5] | 刘耀,王建新,黄元南. 延迟容忍网络中基于社会属性的负载感知路由[J]. Journal of Systems Engineering and Electronics, 2012, 34(1): 185-190. |
[6] | 徐选华, 范永峰. 改进的蚁群聚类算法及在多属性大群体决策中的应用[J]. Journal of Systems Engineering and Electronics, 2011, 33(2): 346-349. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||