Systems Engineering and Electronics ›› 2023, Vol. 45 ›› Issue (11): 3544-3554.doi: 10.12305/j.issn.1001-506X.2023.11.21
• Systems Engineering • Previous Articles Next Articles
Xiaowen ZHU1, Chengli FAN1,*, Yingqi LU1, Wenzheng ZHU1,2, Xuan WU1
Received:
2022-03-01
Online:
2023-10-25
Published:
2023-10-31
Contact:
Chengli FAN
CLC Number:
Xiaowen ZHU, Chengli FAN, Yingqi LU, Wenzheng ZHU, Xuan WU. Anti-missile weapon target allocation modeling and implementation based on improved BBO algorithm and fuzzy expectation effect[J]. Systems Engineering and Electronics, 2023, 45(11): 3544-3554.
Table 1
Firing advantage"
射击有利度 | 武器平台1 | 武器平台2 | 武器平台3 | 武器平台4 |
目标1 | (0.8, 0.82, 0.84) | (0.36, 0.4, 0.44) | (0.56, 0.58, 0.6) | (0.87, 0.9, 0.93) |
目标2 | (0.6, 0.62, 0.64) | (0, 0, 0) | (0, 0, 0) | (0.62, 0.66, 0.7) |
目标3 | (0.9, 0.92, 0.94) | (0.58, 0.6, 0.62) | (0.46, 0.5, 0.54) | (0.68, 0.72, 0.76) |
目标4 | (0, 0, 0) | (0.76, 0.78, 0.8) | (0, 0, 0) | (0.87, 0.91, 0.95) |
目标5 | (0.51, 0.52, 0.53) | (0, 0, 0) | (0, 0, 0) | (0.56, 0.57, 0.58) |
目标6 | (0.76, 0.79, 0.82) | (0.48, 0.5, 0.52) | (0.46, 0.48, 0.5) | (0.61, 0.63, 0.65) |
目标7 | (0, 0, 0) | (0.58, 0.6, 0.62) | (0.7, 0.73, 0.76) | (0.68, 0.7, 0.72) |
目标8 | (0.48, 0.5, 0.52) | (0, 0, 0) | (0.5, 0.52, 0.54) | (0, 0, 0) |
目标9 | (0.54, 0.58, 0.62) | (0.51, 0.55, 0.59) | (0.9, 0.92, 0.94) | (0.66, 0.7, 0.74) |
目标10 | (0.76, 0.8, 0.84) | (0, 0, 0) | (0.53, 0.6, 0.67) | (0, 0, 0) |
Table 6
Comparison of algorithm performance"
比较指标 | BBO | BBODE | BBOPSODE | NSBBO | DGBBO | 本文算法 | |
全局解 | 最优解 | 7.40E-01 | 7.61E-01 | 7.56E-01 | 7.57E-01 | 7.65E-01 | 7.81E-01 |
最差解 | 6.97E-01 | 7.12E-01 | 7.04E-01 | 7.15E-01 | 7.25E-01 | 7.50E-01 | |
平均解 | 7.19E-01 | 7.36E-01 | 7.29E-01 | 7.35E-01 | 7.43E-01 | 7.66E-01 | |
标准差 | 1.23E-02 | 1.44E-02 | 1.55E-02 | 1.24E-02 | 1.16E-02 | 9.00E-03 | |
平均运行时间/s | 15.45 | 23.631 | 28.345 | 18.342 | 20.039 | 16.173 | |
首次出现最优解的代数 | 48 | 68 | 45 | 52 | 80 | 62 |
Table 7
Average running time of different sizes and iterations"
迭代次数 | 种群规模 | ||||||||||
50 | 100 | 200 | |||||||||
最优值 | 平均值 | 运行时间/s | 最优值 | 平均值 | 运行时间/s | 最优值 | 平均值 | 运行时间/s | |||
50 | 7.60E-01 | 7.42E-01 | 1.71E+00 | 7.67E-01 | 7.55E-01 | 3.58E+00 | 7.84E-01 | 7.61E-01 | 5.83E+00 | ||
100 | 7.71E-01 | 7.50E-01 | 3.09E+00 | 7.77E-01 | 7.62E-01 | 8.31E+00 | 7.91E-01 | 7.65E-01 | 1.61E+01 | ||
200 | 7.79E-01 | 7.50E-01 | 7.59E+00 | 7.81E-01 | 7.66E-01 | 1.62E+01 | 7.92E-01 | 7.70E-01 | 2.51E+01 |
Table 8
Algorithm comparison on different scales"
算法 | 规模 | 运行时间/s |
BBO | 4×4 | 14.051 |
10×10 | 21.987 | |
50×50 | 30.980 | |
BBODE | 4×4 | 23.631 |
10×10 | 28.023 | |
50×50 | 38.292 | |
本文算法 | 4×4 | 16.173 |
10×10 | 19.933 | |
50×50 | 29.098 | |
BBOPSODE | 4×4 | 18.012 |
10×10 | 28.353 | |
50×50 | 39.134 | |
NSBBO | 4×4 | 16.352 |
10×10 | 21.523 | |
50×50 | 38.242 | |
DGBBO | 4×4 | 16.671 |
10×10 | 19.123 | |
50×50 | 29.123 |
1 | ROSENBERGER J M, HWANG H S, PALLERLA R P, et al. The generalized weapon target assignment problem[C]//Proc. of the 10th International Command and Control Research and Technology Symposium, 2005. |
2 | GAO S , ZHANG Z Y , ZHANG X R , et al. Immune genetic algorithm for weapon-target assignment problem[J]. Intelligent Information Technology Application, 2007, 3 (2): 145- 148. |
3 | BOGDANOWIC Z . A new efficient algorithm for optimal assignment of smart weapons to targets[J]. Computational & Applied Mathematics, 2009, 5 (10): 1965- 1969. |
4 | LEE M Z . Constrained weapon-target assignment: enhanced very large scale neighborhood search algorithm[J]. IEEE Trans.on Systems, Man, and Cybernetics-Part A: Systems and Humans, 2010, 4 (1): 198- 204. |
5 | SUMMERS D S , ROBBINS M J , LUNDAY B J . An approximate dynamic programming approach for comparing firing policies in a networked air defense environment[J]. Computers & Operations Research, 2020, 11 (2): 104- 112. |
6 | LI J , XIN B , PARDALOS P M , et al. Solving bi-objective uncertain stochastic resource allocation problems by the CVaR-based risk measure and decomposition-based multi-objective evolutionary algorithms[J]. Annals of Operations Research, 2021, 2 (5): 296- 299. |
7 | 汪民乐, 范阳涛. 基于效果的常规导弹火力分配模型智能求解算法[J]. 系统工程与电子技术, 2017, 39 (11): 2509- 2514. |
WANG M L , FAN Y T . Intelligent solving algorithm for effects-based firepower allocation model of conventional missiles[J]. Systems Engineering and Electronics, 2017, 39 (11): 2509- 2514. | |
8 | 吴文海, 郭晓峰, 周思羽, 等. 改进差分进化算法求解武器目标分配问题[J]. 系统工程与电子技术, 2021, 43 (4): 1012- 1021. |
WU W H , GUO X F , ZHOU S Y , et al. Improved differential evolution algorithm for solving weapon-target assignment problem[J]. Systems Engineering and Electronics, 2021, 43 (4): 1012- 1021. | |
9 | 王玮, 刘兴林, 王军. 信息化条件下海上编队区域防空目标分配方法[J]. 系统工程理论与实践, 2015, 35 (4): 1011- 1018. |
WANG W , LIU X L , WANG J . Method of area antiaircraft weapon target assignment for the warship formation under informationized conditions[J]. Systems Engineering-Theory & Practice, 2015, 35 (4): 1011- 1018. | |
10 | 贺小亮, 毕义明. 基于模拟退火遗传算法的编队对地攻击火力分配建模与优化[J]. 系统工程与电子技术, 2014, 36 (5): 900- 904. |
HE X L , BI Y M . Modeling and optimization of formation air-to-ground attack fire distributionbased on simulated annealing genetic algorithm[J]. Systems Engineering and Electronics, 2014, 36 (5): 900- 904. | |
11 | CHANG T Q , KONG D P , HAO N , et al. Solving the dynamic weapon target assignment problem by an improved artificial bee colony algorithm with heuristic factor initialization[J]. Applied Soft Computing, 2018, 7 (9): 845- 863. |
12 | LI L Y , LIU F X , LONG G Z , et al. Modified particle swarm optimization for BMDS interceptor resource planning[J]. Applied Intelligence, 2016, 4 (3): 471- 488. |
13 |
SIMON D . Biogeography-based optimization[J]. IEEE Trans.on Evolutionary Computation, 2008, 12 (6): 702- 713.
doi: 10.1109/TEVC.2008.919004 |
14 |
张新明, 康强, 王霞. 差分迁移和趋优变异的生物地理学优化算法[J]. 小型微型计算机系统, 2018, 39 (6): 1168- 1177.
doi: 10.3969/j.issn.1000-1220.2018.06.010 |
ZHANG X M , KANG Q , WANG X . Biogeography-based optimization with differential migration and global-best mutation[J]. Journal of Chinese Computer Systems, 2018, 39 (6): 1168- 1177.
doi: 10.3969/j.issn.1000-1220.2018.06.010 |
|
15 | 罗锐涵, 李顺民. 基于改进BBO算法的火力分配方案优化[J]. 南京航空航天大学学报, 2020, 52 (6): 897- 902. |
LUO R H , LI S M . Optimization of firepower allocation based on improved BBO algorithm[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2020, 52 (6): 897- 902. | |
16 | REIHANIAN A , DERAKHSHI M , AGHDASI H S . NBBO: a new variant of biogeography-based optimization with a novel framework and a two-phase migration operator[J]. Information Sciences, 2019, 5 (2): 178- 201. |
17 | PUSHPA , CHAND B J . Fireworks-inspired biogeography-based optimization[J]. Soft Computing, 2019, 2 (16): 7091- 7115. |
18 | ABU-ELRUB A , KHAMEES M , ABABNEH J , et al. Hybrid energy system design using greedy particle swarm and biogeography-based optimisation[J]. IET Renewable Power Generation, 2020, 14 (10): 1657- 1667. |
19 | ZAHRAN E G , ARAFA A A , SALEH H I , et al. A self learned invasive weed-mixed biogeography based optimization algorithm for RFID network planning[J]. Wireless Networks, 2020, 2 (3): 172- 181. |
20 | ZHENG Y J , LING H F , XUE J Y . Eco geography-based optimization: enhancing biogeography-based optimization with eco geographic barriers and differentiations[J]. Computers & Operations Research, 2014, 5 (2): 115- 127. |
21 | ZHENG X W , LU D J , WANG X G , et al. A cooperative coevolutionary biogeography-based optimizer[J]. Applied Intelligence, 2015, 4 (1): 95- 111. |
22 | KUMAR G P , DE S S , SATCHIDANANDA D . Adaptive neighbourhood for locally and globally tunedbiogeography based optimization algorithm[J]. Journal of King Saud University-Computer and Information Sciences, 2021, 4 (33): 453- 467. |
23 | LIU B , LIU Y K . Expected value of fuzzy variable and fuzzy expected value models[J]. IEEE Trans.on Fuzzy Systems, 2002, 10 (4): 445- 50. |
24 | ORHAN K . Air defense missile-target allocation models for a naval task group[J]. Computers & Operations Research, 2008, 35 (6): 1759- 1770. |
25 | 汪民乐, 邓昌. 论基于效果的常规导弹火力决策[J]. 飞航导弹, 2016, 8 (12): 8- 16. |
WANG M L , DENG C . On conventional missile firepower decision based on effect[J]. Aerodynamic Missile Journal, 2016, 8 (12): 8- 16. | |
26 | RAINER S , KENNETH P . Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces[J]. Journal of Global Optimization, 1997, 11 (4): 145- 152. |
27 | CHENG M Y , PRAYOGO D . Symbiotic organisms search: a new metaheuristic optimization algorithm[J]. Computers & Structures, 2014, 139 (7): 98- 112. |
28 | KUMAR S, PANT M, DIXIT A, et al. BBO-DE: hybrid algorithm based on BBO and DE[C]//Proc. of the International Conference on Computing, Communication and Automation, 2017: 379-383. |
29 | YOGESH C K , HARIHARAN M , RUZELITA N , et al. Hybrid BBO-PSO and higher order spectral features for emotion and stress recognition from natural speech[J]. Applied Soft Computing, 2017, 56 (2): 217- 232. |
30 | ZHENG C , PENG Y , XU Y M , et al. Task scheduling algorithm based on improved NSBBO in cloud manufacturing environment[J]. Computer Engineering, 2019, 45 (10): 26- 32. |
[1] | Shuting WANG, Xiaobing LIU, Junhua ZHOU, Zhaoyang BAI, Xiang ZHAI. Ontology based knowledge representation and reuse method for complex product maintenance engineering cases [J]. Systems Engineering and Electronics, 2022, 44(2): 557-568. |
[2] | Yufeng MA, Nan XIANG, Yajie DOU, Jiang JIANG, Kewei YANG, Yuejin TAN. Application and research of knowledge graph in military system engineering [J]. Systems Engineering and Electronics, 2022, 44(1): 146-153. |
[3] | SHEN Xiao-yong, LEI Ying-jie, CAI Ru, ZHANG Chi. Method for dissimilarity measure among intuitionistic fuzzy sets based on weighted Minkowski distance [J]. Journal of Systems Engineering and Electronics, 2009, 31(6): 1358-1361. |
[4] | HOU Wei, YANG Bing-ru, WU Chen-sheng, ZHOU Zhun. Multi-relational pattern frequency update algorithm based on sliding window [J]. Journal of Systems Engineering and Electronics, 2009, 31(3): 671-676. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||