Systems Engineering and Electronics ›› 2023, Vol. 45 ›› Issue (2): 431-443.doi: 10.12305/j.issn.1001-506X.2023.02.14
• Systems Engineering • Previous Articles
Ziyi CHEN, Yajie DOU, Xiangqian XU, Yuejin TAN, Kewei YANG, Jiang JIANG
Received:
2021-10-06
Online:
2023-01-13
Published:
2023-02-04
Contact:
Yajie DOU
CLC Number:
Ziyi CHEN, Yajie DOU, Xiangqian XU, Yuejin TAN, Kewei YANG, Jiang JIANG. Combinatorial optimization solution of complex equipment driven by contribution and sharing two-tier strategy[J]. Systems Engineering and Electronics, 2023, 45(2): 431-443.
Table 1
Decision variable and symbol definition"
符号 | 定义 |
xij | 研发单位j是否承担装备i的研发任务 |
tij | 研发单位j研发装备i的时间 |
nij | 研发单位j研发装备i的数量 |
qik | 待接收单位k接受装备i的数量 |
rik | 待接收单位k现有装备i的数量 |
I | 待发展装备集合 |
J | 可选择研发单位集合 |
K | 待接受装备的单位集合 |
N1i | 无法承担装备i研发任务的研发单位集合 |
N2i | 无法接受装备i的待接受单位集合 |
C | 能力需求集合 |
H | 装备发展数量对能力提升的指数幂多项式的项数集合 |
pc | 能力c的能力需求数值 |
ltj | 研发单位j可承担的最大工程量 |
mj | 研发单位j每单位年工程量所需经费 |
lmi | 装备i的最大支持经费 |
ubti | 装备i的发展时间上限 |
lbti | 装备i的发展时间下限 |
ubni | 装备i的发展数量上限 |
lbni | 装备i的发展数量下限 |
αic | 装备i发展数量对能力c提升的指数幂多项式常量 |
βich | 装备i发展数量对能力c提升的指数幂多项式的第h项指数 |
γic | 装备i发展数量对能力c提升的指数幂多项式的最大值系数 |
δich | 装备i发展数量对能力c提升的指数幂多项式的第h项系数 |
μij | 第j家研发单位研发装备i的研发时间与研发数量关系系数 |
ε | 能力满足度阈值 |
tnorm | 装备发展与组合规划方案所需时间的归一化表示 |
mnorm | 装备发展与组合规划方案所需经费的归一化表示 |
cnorm | 装备发展与组合规划方案对能力满足度的归一化表示 |
wm | 经费权重 |
wt | 时间权重 |
Table 2
Information about complex equipment to be developed"
装备 | 支撑经费/亿元 | 研发时间/年 | 研发数量 | 所属类型 | 可满足能力 | ||||||
目标识别 | 定位跟踪 | 持续监视 | 传输分发 | 互操作 | 自适应 | 指挥控制 | |||||
侦察卫星 | 60 | [5, 10] | [5, 20] | 航天类 | √ | √ | √ | √ | - | - | - |
预警机 | 48 | [5, 9] | [20, 50] | 航空类 | √ | √ | - | √ | - | - | √ |
无人机 | 60 | [6, 10] | [20, 200] | 航空类 | √ | √ | - | - | √ | √ | - |
预警雷达 | 46 | [5, 9] | [8, 25] | 配属类 | √ | √ | √ | - | - | - | √ |
侦察船 | 50 | [4, 8] | [5, 15] | 船舶类 | √ | √ | √ | - | - | - | - |
装甲侦察车 | 30 | [4, 8] | [5, 15] | 装甲类 | √ | √ | √ | - | - | - | - |
数据链 | 25 | [5, 10] | [5, 10] | 系统类 | - | - | - | √ | √ | √ | - |
指控系统 | 28 | [5, 10] | [5, 10] | 系统类 | - | - | - | - | √ | √ | √ |
Table 3
Alternative research institute information"
单位 | 每单位年工程量所需经费/亿元 | 最大可承担工程量/年 | 可承研武器装备类型 | |||||
航天类 | 航空类 | 配属类 | 船舶类 | 装甲类 | 系统类 | |||
1 | 1.8 | 30 | √ | - | √ | - | - | √ |
2 | 2 | 40 | - | √ | √ | - | - | √ |
3 | 3.5 | 60 | - | √ | √ | - | - | - |
4 | 3.2 | 50 | - | √ | - | - | - | √ |
5 | 3.8 | 50 | √ | - | √ | - | - | √ |
6 | 4.2 | 60 | √ | - | √ | - | - | √ |
7 | 3.5 | 60 | - | - | √ | √ | - | - |
8 | 3 | 50 | - | - | - | √ | - | √ |
9 | 3.2 | 70 | - | - | √ | - | √ | - |
10 | 2.8 | 60 | - | - | - | - | √ | √ |
Table 6
Combinatorial optimization solution of intelligence, surveillance and reconnaissance armament driven by contribution and sharing two-tier strategy"
装备 | 研发单位 | |||||||||
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |
侦察卫星 | 10, 11 | - | - | - | 8, 8 | - | - | - | - | - |
预警机 | - | 9, 26 | - | 8, 23 | - | - | - | - | - | - |
无人机 | - | 10, 110 | - | 8, 88 | - | - | - | - | - | - |
预警雷达 | 8, 11 | 9, 14 | - | - | - | - | - | - | - | - |
侦察船 | - | - | - | - | - | - | 7, 7 | 8, 8 | - | - |
装甲侦察车 | - | - | - | - | - | - | - | - | - | 8, 8 |
数据链 | 7, 6 | 5, 4 | - | - | - | - | - | - | - | - |
指控系统 | 5, 4 | 7, 6 | - | - | - | - | - | - | - | - |
1 |
杜智远, 廖学军, 黄昊. 美军武器装备联合试验的发展与启示[J]. 军事运筹与系统工程, 2018, 32 (1): 73- 80.
doi: 10.3969/j.issn.1672-8211.2018.01.013 |
DU Z Y , LIAO X J , HUANG H . The development and enlightenment of the joint test of U.S. arms and equipment[J]. Military Ope-rations Research and Systems Engineering, 2018, 32 (1): 73- 80.
doi: 10.3969/j.issn.1672-8211.2018.01.013 |
|
2 | 新华社. 新时代的中国国防[EB/OL]. [2021-03-18]. http://www.gov.cn/zhengce/2019-07/24/content_5414325.htm. |
Xinhua News Agency. China's national defense in the new era[EB/OL]. [2021-03-18]. http://www.gov.cn/zhengce/2019-07/24/content_5414325.htm. | |
3 |
向南, 豆亚杰, 姜江, 等. 马赛克战概念下作战模块应急重构自主决策[J]. 指挥与控制学报, 2020, 6 (3): 223- 228.
doi: 10.3969/j.issn.2096-0204.2020.03.0223 |
XIANG N , DOU Y J , JIANG J , et al. Autonomous emergency decision-making of combat module under mosaic warfare[J]. Journal of Command an Control, 2020, 6 (3): 223- 228.
doi: 10.3969/j.issn.2096-0204.2020.03.0223 |
|
4 | The Military Operations Research Society Workshop. Capabilities based planning: the road ahead[R]. Virginia: Institute for Defense Analysis Arlington, 2004. |
5 | Joint Chiefs of Staff. Chairman of the joint chiefs of staff instruction 3170.01G: Joint capabilities integration and development system[EB/OL]. [2021-02-07]. http://www.dtic.mil/cjcsdirectives/cdata/unlimit/317001.pdf. |
6 | Department of Defense. Department of Defense DIRECTIVE 8115.01: IT portfolio management[EB/OL]. [2021-02-07]. http://www.dtic.mil/whs/directives/corres/pdf/811501p.pdf. |
7 | NEAGA E I, HENSHAW M, YUE Y. The influence of the concept of capability-based management on the development of the systems engineering discipline[C]//Proc. of the 7th Annual Conference on Systems Engineering Researc, 2009: 34-41. |
8 |
程贲, 鲁延京, 葛冰峰, 等. 武器装备体系能力多视图模型研究[J]. 国防科技大学学报, 2011, 33 (6): 163- 168.
doi: 10.3969/j.issn.1001-2486.2011.06.030 |
CHENG B , LU Y J , GE B F , et al. Capability view model for weapon system of systems[J]. Journal of National University of Defense Technology, 2011, 33 (6): 163- 168.
doi: 10.3969/j.issn.1001-2486.2011.06.030 |
|
9 | 张西林, 谭跃进, 杨志伟. 多重不确定因素影响下的高端装备研制任务流程优化[J]. 系统工程理论与实践, 2019, 39 (3): 725- 734. |
ZHANG X L , TAN Y J , YANG Z W . Optimization of high-end equipment development task process influenced by multiple uncertainty factors[J]. Systems Engineering-Theory & Practice, 2019, 39 (3): 725- 734. | |
10 | 周宇, 姜江, 赵青松, 等. 武器装备体系组合规划的高维多目标优化决策[J]. 系统工程理论与实践, 2014, 34 (11): 2944- 2954. |
ZHOU Y , JIANG J , ZHAO Q S , et al. Many-objective optimization and decision-making for portfolio planning of armament system of systems[J]. Systems Engineering-Theory & Practice, 2014, 34 (11): 2944- 2954. | |
11 | 向南, 豆亚杰, 姜江, 等. 基于专家信任网络的不完全信息武器选择决策[J]. 系统工程理论与实践, 2021, 41 (3): 759- 770. |
XIANG N , DOU Y J , JIANG J , et al. Hesitant fuzzy group decision-making method for weapon selection based on expert trust network under incomplete information[J]. Systems Engineering-Theory & Practice, 2021, 41 (3): 759- 770. | |
12 | 豆亚杰, 徐向前, 周哲轩, 等. 系统组合选择方法及典型军事应用[J]. 系统工程与电子技术, 2019, 41 (12): 2754- 2762. |
DOU Y J , XU X Q , ZHOU Z X , et al. Analysis of system portfolio selection and typical military application[J]. Systems Engineering and Electronics, 2019, 41 (12): 2754- 2762. | |
13 | 徐泽水, 任珮嘉. 犹豫模糊偏好决策研究进展与前景[J]. 系统工程理论与实践, 2020, 40 (8): 2193- 2202. |
XU Z S , REN P J . A survey of decision making with hesitant fuzzy preference relations: progress and prospect[J]. Systems Engineering-Theory & Practice, 2020, 40 (8): 2193- 2202. | |
14 | MENG F Y , AN Q X . A new approach for group decision making method with hesitant fuzzy preference relations[J]. Know-ledge-Based Systems, 2017, 127, 1- 15. |
15 | XU Y J , LI C Y , WEN X W . Missing values estimation and consensus building for incomplete hesitant fuzzy preference relations with multiplicative consistency[J]. International Journal of Computational Intelligence Systems, 2018, 11, 101- 119. |
16 | MOU Q , XU Z S , LIAO H C , et al. Two regression methods for hesitant multiplicative preference relations with different consistencies[J]. Soft Computing, 2019, 23, 7029- 7044. |
17 | GEORGE T, AMUDHA T. Genetic algorithm based multi-objective optimization framework to solve traveling salesman problem[M]. Singapore: Springer, 2020: 141-151. |
18 | MIRJALILI S , DONG J S , LEWIS A . Ant colony optimizer: theory, literature review, and application in AUV path planning[J]. Nature-Inspired Optimizers, 2020, 811, 7- 21. |
19 | HOJJATI A , MONADI M , FARIDHOSSEINI A , et al. Application and comparison of NSGA-Ⅱ and MOPSO in multi-objective optimization of water resources systems[J]. Journal of Hydrology and Hydromechanics, 2018, 66 (3): 323- 329. |
20 | KHAN B, HANOUN S, JOHNSTONE M, et al. Multi-objective job shop scheduling using i-NSGA-Ⅲ[C]//Proc. of the Annual IEEE International Systems Conference, 2018. |
21 | HOTTUNG A , TANAKA S , TIERNEY K . Deep learning assisted heuristic tree search for the container pre-marshalling problem[J]. Computers & Operations Research, 2020, 113, 104781. |
22 | CHEN Z Y, DE CAUSMAECKER P, DOU Y J. Neural networked assisted tree search for the personnel rostering problem[EB/OL]. [2021-09-06]. https://arxiv.org/abs/2010.14252. |
23 | VACLAVIK R , NOVAK A , SUCHA P , et al. Accelerating the branch-and-price algorithm using machine learning[J]. European Journal of Operational Research, 2018, 271 (3): 1055- 1069. |
24 | DENG Y , LIU Y , ZHOU D Y . An improved genetic algorithm with initial population strategy for symmetric TSP[J]. Mathematical Problems in Engineering, 2015, 2015, 212794. |
25 | KATIYAR S, IBRAHEEM N, ANSARI A Q. Ant colony optimization: a tutorial review[C]//Proc. of the National Confe-rence on Advances in Power and Control, 2015: 99-110. |
26 | CHEN Z Y , DOU Y J , XU X Q , et al. Service-oriented wea-pon systems of system portfolio selection method[J]. Journal of Systems Engineering and Electronics, 2020, 31 (3): 551- 566. |
27 | 张骁雄, 葛冰峰, 姜江, 等. 面向能力需求的武器装备体系组合规划模型与算法[J]. 国防科技大学学报, 2017, 39 (1): 102- 108. |
ZHANG X X , GE B F , JIANG J , et al. Capability requirements oriented weapon system of systems portfolio planning model and algorithm[J]. Journal of National University of Defense Technology, 2017, 39 (1): 102- 108. | |
28 | BURKE E K , CURTOIS T . New approaches to nurse rostering benchmark instances[J]. European Journal of Operational Research, 2014, 237 (1): 71- 81. |
29 | 苏宙行, 王卓, 吕志鹏. 求解多阶段护士排班问题的带权禁忌搜索算法[J]. 中国科学: 信息科学, 2016, 7 (7): 834- 854. |
SU Z X , WANG Z , LYU Z P . Weighted tabu search for multi-stage nurse rostering problem[J]. Scientia Sinica Informationis, 2016, 7 (7): 834- 854. | |
30 | KINGMA D P, BA J. Adam: a method for stochastic optimization[EB/OL]. [2021-09-06]. https://arxiv.org/abs/1412.6980. |
[1] | Fei ZHAO, Xin LI, Jian ZHANG. Joint policy optimization of condition-based maintenance and spare ordering considering competing failure [J]. Systems Engineering and Electronics, 2023, 45(1): 291-301. |
[2] | Luyun QIU, Zhigeng FANG, Liangyan TAO, Qiucheng TAO. Effectiveness evaluation of network SoS based on improved FDNA model [J]. Systems Engineering and Electronics, 2022, 44(12): 3728-3737. |
[3] | Dongliang YIN, Guoheng CUI, Xiaoying HUANG, Huan ZHANG. Interval-valued Pythagorean fuzzy multi-attribute decision-making based on improved score function and prospect theory [J]. Systems Engineering and Electronics, 2022, 44(11): 3463-3469. |
[4] | Qingqing YANG, Yingying GAO, Yu GUO, Boyuan XIA, Kewei YANG. Target search path planning for naval battle field based on deep reinforcement learning [J]. Systems Engineering and Electronics, 2022, 44(11): 3486-3495. |
[5] | Cong WANG, Huiliang SHEN, Yongxiang XIA, Guanghan BAI, Yining FANG. Analysis of critical nodes in equipment support system [J]. Systems Engineering and Electronics, 2022, 44(10): 3134-3142. |
[6] | Zhigeng FANG, Yuexin XIA, Jingru ZHANG, Yi XIONG, Jingyi CHEN. A stimulus-response learning model for Agent-based system process A-GERT network [J]. Systems Engineering and Electronics, 2022, 44(8): 2540-2553. |
[7] | Shunqi HUAN, Zhemei FAN, Jianbo WANG. System-of-systems effectiveness evaluation method based on functional dependency network [J]. Systems Engineering and Electronics, 2022, 44(7): 2191-2200. |
[8] | Jiang JIANG, Qiancheng JIN, Xueming XU, Shuai HOU, Jichao LI. Preliminary study on national defense science and technology system engineering in the era of intelligence [J]. Systems Engineering and Electronics, 2022, 44(6): 1880-1888. |
[9] | Kun CHEN, Ning HUANG, Xiangwei WU, Jingmeng ZHAO. A 5G application fault analysis method considering suppress coupling relationship [J]. Systems Engineering and Electronics, 2022, 44(6): 2043-2050. |
[10] | Dali ZHANG, Hongwei XIA, Chaoxing ZHANG, Guangcheng MA, Changhong WANG. Improved firefly algorithm and its convergence analysis [J]. Systems Engineering and Electronics, 2022, 44(4): 1291-1300. |
[11] | Jingfeng LI, Yunxiang CHEN, Huachun XIANG, Jian WANG. Joint optimization of condition-based maintenance and spare part inventory for multi-component system considering random shock effect [J]. Systems Engineering and Electronics, 2022, 44(3): 875-883. |
[12] | Haojie ZHANG, Rongmin LIANG, Yudong ZHANG. Design of simulation system for UGVs based on human-in-the-loop [J]. Systems Engineering and Electronics, 2022, 44(2): 538-545. |
[13] | Wenming WANG, Jialu DU. Agent path planning based on regular hexagon grid JPS algorithm [J]. Systems Engineering and Electronics, 2021, 43(12): 3635-3642. |
[14] | Xin ZHOU, Weiping WANG, Yifan ZHU, Tao WANG, Tian JING. Unmanned equipment SoS architecture scheme space searchingmethod based on the sequential allocated mechanism [J]. Systems Engineering and Electronics, 2021, 43(11): 3211-3219. |
[15] | Yuhang KE, Yanjun LI, Yuyuan CAO, Xingcheng ZHANG. Research on model-based safety analysis of flight control system [J]. Systems Engineering and Electronics, 2021, 43(11): 3259-3265. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||