Systems Engineering and Electronics ›› 2022, Vol. 44 ›› Issue (11): 3346-3356.doi: 10.12305/j.issn.1001-506X.2022.11.08
• Sensors and Signal Processing • Previous Articles Next Articles
Qi LIU, Xinyu ZHANG*, Yongxiang LIU
Received:
2021-06-22
Online:
2022-10-26
Published:
2022-10-29
Contact:
Xinyu ZHANG
CLC Number:
Qi LIU, Xinyu ZHANG, Yongxiang LIU. Few-shot SAR target recognition based on gated multi-scale matching network[J]. Systems Engineering and Electronics, 2022, 44(11): 3346-3356.
Table 1
Comparison results of recognition accuracy of the proposed method and other few-shot learning methods in few-shot conditions"
方法 | 5类 1样本 | 5类 2样本 | 5类 5样本 | 5类 10样本 |
MAML[ | 0.564 | 0.735 | 0.775 | 0.877 |
Meta-LSTM[ | 0.611 | 0.671 | 0.792 | 0.844 |
Matching Net[ | 0.597 | 0.600 | 0.701 | 0.778 |
所提方法 | 0.705 | 0.829 | 0.842 | 0.932 |
Table 2
Comparison results of recognition accuracy of the proposed method and other few-shot SAR target recognition methods in few-shot conditions"
方法 | 5类 1样本 | 5类 2样本 | 5类 5样本 | 5类 10样本 |
度量学习小样本 SAR目标识别 方法[ | 0.608 | 0.650 | 0.767 | 0.800 |
小样本学习SAR 目标识别方法[ | 0.600 | 0.650 | 0.700 | 0.869 |
所提方法 | 0.705 | 0.829 | 0.842 | 0.932 |
Table 4
Recognition results of the proposed method for SAR images with added noise"
小样本条件 | SNR/dB | 识别准确率 |
5类1样本 | -10 | 0.536 |
-5 | 0.574 | |
0 | 0.605 | |
5 | 0.627 | |
10 | 0.650 | |
5类2样本 | -10 | 0.671 |
-5 | 0.674 | |
0 | 0.692 | |
5 | 0.700 | |
10 | 0.724 | |
5类5样本 | -10 | 0.766 |
-5 | 0.776 | |
0 | 0.780 | |
5 | 0.813 | |
10 | 0.826 | |
5类10样本 | -10 | 0.816 |
-5 | 0.865 | |
0 | 0.870 | |
5 | 0.903 | |
10 | 0.904 |
1 | BARTON D K , LEONOV S A . Radar technology encyclopedia[M]. New York: Artech house, 1998. |
2 | 胡利平. 合成孔径雷达图像目标识别技术研究[D]. 西安: 西安电子科技大学, 2009. |
HU L P. Study on SAR images target recognition[D]. Xi'an: Xidian University, 2009. | |
3 | 庞礴. 多通道SAR成像理论与方法研究[D]. 长沙: 国防科学技术大学, 2014. |
PANG B. Study on the imaging theory and method of multi-channel SAR[D]. Changsha: National University of Defense and Technology, 2014. | |
4 |
LI Y Y , PENG C , CHEN Y Q , et al. A deep learning method for change detection in synthetic aperture radar images[J]. IEEE Trans.on Geoscience and Remote Sensing, 2019, 57 (8): 5751- 5763.
doi: 10.1109/TGRS.2019.2901945 |
5 |
RAN L , LIU Z , LI T , et al. Extension of map-drift algorithm for highly squinted SAR autofocus[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 10 (9): 4032- 4044.
doi: 10.1109/JSTARS.2017.2702621 |
6 | SHI L J, KARVONEN J, CHENG B, et al. Sea ice thickness retrieval from SAR imagery over Bohai sea[C]//Proc. of the IEEE Geoscience and Remote Sensing Symposium, 2014: 4864-4867. |
7 | 陈冬, 句彦伟. 基于改进型YOLOv3的SAR图像舰船目标检测[J]. 系统工程与电子技术, 2021, 43 (4): 937- 943. |
CHEN D , JU Y W . Ship detection in SAR image based on improved YOLOv3[J]. Systems Engineering and Electronics, 2021, 43 (4): 937- 943. | |
8 |
胡利平, 李胜, 殷红成. 基于差准则的二维非参数特征分析的SAR目标识别[J]. 系统工程与电子技术, 2015, 37 (10): 2250- 2254.
doi: 10.3969/j.issn.1001506X.2015.10.09 |
HU L P , LI S , YIN H C . 2-dimensional nonparametric feature analysis based on difference criterion and SAR target recognition[J]. Systems Engineering and Electronics, 2015, 37 (10): 2250- 2254.
doi: 10.3969/j.issn.1001506X.2015.10.09 |
|
9 | ZHANG J S , XING M D , XIE Y Y . FEC: a feature fusion framework for SAR target recognition based on electromagnetic scattering features and deep CNN features[J]. IEEE Trans.on Geoscience and Remote Sensing, 2020, 59 (3): 2174- 2187. |
10 |
CHEN L , JIANG X , LI Z , et al. Feature-enhanced speckle reduction via low-rank and space-angle continuity for circular SAR target recognition[J]. IEEE Trans.on Geoscience and Remote Sensing, 2020, 58 (11): 7734- 7752.
doi: 10.1109/TGRS.2020.2983420 |
11 | OH J , YOUM G Y , KIM M . SPAM-net: a CNN-based SAR target recognition network with pose angle marginalization learning[J]. IEEE Trans.on Circuits and Systems for Video Technology, 2020, 31 (2): 701- 714. |
12 | GUO Y C , DU L , WEI D , et al. Robust sar automatic target recognition via adversarial learning[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 14, 716- 729. |
13 | YANG R , HU Z T , LIU Y M , et al. A novel polarimetric SAR classification method integrating pixel-based and patch-based classification[J]. IEEE Geoscience and Remote Sensing Letters, 2019, 17 (3): 431- 435. |
14 |
BAI X R , XUE R H , WANG L , et al. Sequence SAR image classification based on bidirectional convolution-recurrent network[J]. IEEE Trans.on Geoscience and Remote Sensing, 2019, 57 (11): 9223- 9235.
doi: 10.1109/TGRS.2019.2925636 |
15 | ZHU H L , LIN N , LEUNG H , et al. Target classification from SAR imagery based on the pixel grayscale decline by graph convolutional neural network[J]. IEEE Sensors Letters, 2020, 4 (6): 1002204. |
16 |
CHEN L , JIANG X , LI Z , et al. Feature-enhanced speckle reduction via low-rank and space-angle continuity for circular SAR target recognition[J]. IEEE Trans.on Geoscience and Remote Sensing, 2020, 58 (11): 7734- 7752.
doi: 10.1109/TGRS.2020.2983420 |
17 |
ZHAO Q , PRINCIPE J C . Support vector machines for SAR automatic target recognition[J]. IEEE Trans.on Aerospace and Electronic Systems, 2001, 37 (2): 643- 654.
doi: 10.1109/7.937475 |
18 | HUANG X Y , QIAO H , ZHANG B . SAR target configuration recognition using tensor global and local discriminant embedding[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 13 (2): 222- 226. |
19 |
EL-DARYMLI K , MCGUIRE P , GILL E W , et al. Holism-based features for target classification in focused and complex-valued synthetic aperture radar imagery[J]. IEEE Trans.on Aerospace and Electronic Systems, 2016, 52 (2): 786- 808.
doi: 10.1109/TAES.2015.140757 |
20 |
ROY S , MENAPACE W , OEI S , et al. Deep learning for classification and localization of COVID-19 markers in point-of-care lung ultrasound[J]. IEEE Trans.on Medical Imaging, 2020, 39 (8): 2676- 2687.
doi: 10.1109/TMI.2020.2994459 |
21 | DENG J, DONG W, SOCHER R, et al. Imagenet: a large-scale hierarchical image database[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2009: 248-255. |
22 | GIRSHICK R , DONAHUE J , DARRELL T , et al. Region-based convolutional networks for accurate object detection and segmentation[J]. IEEE Trans.on Pattern Analysis and Machine Intelligence, 2015, 38 (1): 142- 158. |
23 |
TU Y H , DU J , LEE C H . Speech enhancement based on teacher-student deep learning using improved speech presence probability for noise-robust speech recognition[J]. IEEE/ACM Trans.on Audio, Speech, and Language Processing,, 2019, 27 (12): 2080- 2091.
doi: 10.1109/TASLP.2019.2940662 |
24 |
ZHANG Z M , WANG H P , XU F , et al. Complex-valued convolutional neural network and its application in polarimetric SAR image classification[J]. IEEE Trans.on Geoscience and Remote Sensing, 2017, 55 (12): 7177- 7188.
doi: 10.1109/TGRS.2017.2743222 |
25 |
WANG J , ZHENG T , LEI P , et al. Ground target classification in noisy SAR images using convolutional neural networks[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11 (11): 4180- 4192.
doi: 10.1109/JSTARS.2018.2871556 |
26 |
WANG N , WANG Y H , LIU H W , et al. Feature-fused SAR target discrimination using multiple convolutional neural networks[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14 (10): 1695- 1699.
doi: 10.1109/LGRS.2017.2729159 |
27 | TANG J X, ZHANG F, ZHOU Y S, et al. A fast inference networks for SAR target few-shot learning based on improved siamese networks[C]//Proc. of the IEEE International Geoscience and Remote Sensing Symposium, 2019: 1212-1215. |
28 |
WANG L , BAI X R , GONG C , et al. Hybrid inference network for few-shot SAR automatic target recognition[J]. IEEE Trans.on Geoscience and Remote Sensing, 2021, 59 (11): 9257- 9269.
doi: 10.1109/TGRS.2021.3051024 |
29 | FU K , ZHANG T F , ZHANG Y , et al. Few-shot SAR target classification via metalearning[J]. IEEE Trans.on Geoscience and Remote Sensing, 2022, 60, 2000314. |
30 | ROSTAMI M, KOLOURI S, EATON E, et al. SAR image classification using few-shot cross-domain transfer learning[C]//Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, 2019. |
31 | WANG C C , GU H , SU W M . SAR image classification using contrastive learning and pseudo-labels with limited data[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19, 4012505. |
32 | FINN C, ABBEEL P, LEVINE S. Model-agnostic meta-learning for fast adaptation of deep networks[C]//Proc. of the International Conference on Machine Learning, 2017: 1126-1135. |
33 | RAVI S, LAROCHELLE H. Optimization as a model for few-shot learning[C]//Proc. of the International Conference of Learning Representation, 2016. |
34 | VINYALS O , BLUNDELL C , LILLICRAP T , et al. Matching networks for one shot learning[J]. Advances in Neural Information Processing Systems, 2016, 29, 3630- 3638. |
35 | 高飞, 赵洁琼, 林翀, 等. 基于距离度量学习的SAR图像识别方法[J]. 北京理工大学学报, 2021, 41 (3): 334- 340. |
GAO F , ZHAO J Q , LIN C , et al. A SAR image recognition method based on distance metric learning[J]. Transactions of Beijing Institute of Technology, 2021, 41 (3): 334- 340. | |
36 | 应自炉, 宣晨, 翟懿奎, 等. 面向小样本SAR图像识别的自注意力多尺度特征融合网络[J]. 信号处理, 2020, 36 (11): 1846- 1858. |
YING Z L , XUAN C , ZHAI Y K , et al. Self-attention multiscale feature fusion network for small sample SAR image recognition[J]. Journal of Signal Processing, 2020, 36 (11): 1846- 1858. | |
37 |
LIN Z , JI K F , KANG M , et al. Deep convolutional highway unit network for SAR target classification with limited labeled training data[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14 (7): 1091- 1095.
doi: 10.1109/LGRS.2017.2698213 |
38 | 汪航, 陈晓, 田晟兆, 等. 基于小样本学习的SAR图像识别[J]. 计算机科学, 2020, 47 (5): 124- 128. |
WANG H , CHEN X , TIAN S Z , et al. SAR image recognition based on few-shot learning[J]. Computer Science, 2020, 47 (5): 124- 128. | |
39 | LIU T R , LUO W H , MA L , et al. Coupled network for robust pedestrian detection with gated multi-layer feature extraction and deformable occlusion handling[J]. IEEE Trans.on Image Processing, 2020, 30, 754- 766. |
40 | HU J , SHEN L , ALBANIE S , et al. Squeeze-and-excitation networks[J]. IEEE Trans.on Pattern Analysis and Machine Intelligence, 2020, 42 (8): 2011- 2023. |
[1] | Juncheng GUO, Gang WAN, Xinjie HU, Fabao YAN, Shuai WANG. Meta-learning method for solar radio spectrum burst recognition [J]. Systems Engineering and Electronics, 2022, 44(8): 2410-2418. |
[2] | Caiyun WANG, Yida WU, Jianing WANG, Lu MA, Huanyue ZHAO. SAR image target recognition based on combinatorial optimization convolutional neural network [J]. Systems Engineering and Electronics, 2022, 44(8): 2483-2487. |
[3] | Jingming SUN, Shengkang YU, Jun SUN. Radar small sample target recognition method based on meta learning and its improvement [J]. Systems Engineering and Electronics, 2022, 44(6): 1839-1845. |
[4] | Xiaoling ZHOU, Zhaoxia ZHANG, Ya LU, Qian WANG, Kunkun WANG. SAR image recognition based on improved R-FCN [J]. Systems Engineering and Electronics, 2022, 44(4): 1202-1209. |
[5] | Jingming SUN, Shengkang YU, Jun SUN. Pose sensitivity analysis of HRRP recognition based on deep learning [J]. Systems Engineering and Electronics, 2022, 44(3): 802-807. |
[6] | Ruifeng LI, Aiqiang XU, Weichao SUN, Shuyou WANG. Recommendation method for avionics feature selection algorithm basedon meta-learning [J]. Systems Engineering and Electronics, 2021, 43(7): 2011-2020. |
[7] | Yuan YAN, Jun SUN, Jingming SUN, Junpeng YU. Radar few shot target recognition method and application analysis [J]. Systems Engineering and Electronics, 2021, 43(3): 684-692. |
[8] | Yuting BAO, Fei CAO, Kunpeng ZHANG, Bichao ZHAN, Junyi LI, Jianwei ZHAN. Range ambiguity suppression of the missile-borne SAR wide area imaging based on OFDM-LFM [J]. Systems Engineering and Electronics, 2021, 43(2): 369-375. |
[9] | Xiaokang DAI, Junjun YIN, Jian YANG. Vehicle detection based on Wishart distance and superpixel in polarimetric SAR image [J]. Systems Engineering and Electronics, 2021, 43(10): 2766-2774. |
[10] | Qiang ZENG, Zheng HUANG, Shuhuan WEI. Bayesian network parameter learning method based on expert priori knowledge and monotonic constraints [J]. Systems Engineering and Electronics, 2020, 42(3): 646-652. |
[11] | Chongyu PAN, Jian HUANG, Jianguo HAO, Jianxing GONG, Zhongjie ZHANG. Survey of weakly supervised learning integrating zero-shot and few-shot learning [J]. Systems Engineering and Electronics, 2020, 42(10): 2246-2256. |
[12] | Kefan ZHU, Jiegui WANG. Low-resolution radar target one-step recognition algorithm based on SCGAN+CNN with a limited training data [J]. Systems Engineering and Electronics, 2020, 42(1): 67-75. |
[13] | ZHANG Jun, HU Shengliang, YANG Qing, FAN Xueman. RCS statistical features and recognition model of air floating corner reflector [J]. Systems Engineering and Electronics, 2019, 41(4): 780-786. |
[14] | YUAN Jiawen, LIU Wenbo, ZHANG Gong. Application of dictionary learning algorithm in HRRP based on statistical modeling [J]. Systems Engineering and Electronics, 2018, 40(4): 762-767. |
[15] | BAO Wenxia, YAN Shaomei, LIANG Dong, HU Gensheng. Image classification algorithm based on elliptic hyperbolic mahalanobis metric [J]. Systems Engineering and Electronics, 2018, 40(2): 456-462. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||