Systems Engineering and Electronics ›› 2022, Vol. 44 ›› Issue (2): 401-409.doi: 10.12305/j.issn.1001-506X.2022.02.06
• Electronic Technology • Previous Articles Next Articles
Zizhuang SONG*, Jiawei YANG, Dongfang ZHANG, Shiqiang WANG, Shuo ZHANG
Received:
2021-04-01
Online:
2022-02-18
Published:
2022-02-24
Contact:
Zizhuang SONG
CLC Number:
Zizhuang SONG, Jiawei YANG, Dongfang ZHANG, Shiqiang WANG, Shuo ZHANG. Real-time infrared multi-class multi-target anchor-free tracking network[J]. Systems Engineering and Electronics, 2022, 44(2): 401-409.
Table 2
Comparison of tracking accuracy between RepVGG based tracking network and other lightweight networks"
网络结构 | MOTA | IDs | IDF1 | MT | ML | Score |
ResNet18+DCN | 59.52 | 361 | 63.15 | 38/71 | 10/71 | 65.53 |
ResNet18+DFPN | 63.47 | 306 | 65.64 | 40/71 | 9/71 | 68.19 |
HRNet18 | 66.51 | 227 | 68.81 | 41/71 | 7/71 | 70.80 |
DLA34 | 67.18 | 221 | 69.26 | 42/71 | 7/71 | 71.43 |
RepVGG+DCN(Deploy) | 62.03 | 284 | 64.04 | 38/71 | 9/71 | 66.73 |
RepVGG+FFPN(Train) | 66.24 | 267 | 66.72 | 40/71 | 8/71 | 69.51 |
RepVGG+FFPN(Deploy) | 66.24 | 267 | 66.72 | 40/71 | 8/71 | 69.51 |
Table 3
Comparison of inference latency between RepVGG based tracking network and other lightweight networks"
网络结构 | 参数量 (×106) | 计算复杂度/ GFLOPs | 网络推理 时间/ms |
ResNet18+DCN | 15.46 | 58.74 | 28.68 |
ResNet18+DFPN | 16.72 | 60.24 | 35.08 |
DLA34 | 19.84 | 72.12 | 63.89 |
HRNet18 | 11.62 | 127.54 | 184.12 |
RepVGG+DCN(Deploy) | 13.51 | 63.99 | 32.62 |
RepVGG+FFPN(Train) | 13.02 | 61.06 | 47.32 |
RepVGG+FFPN(Deploy) | 11.91 | 57.64 | 28.26 |
Table 4
Comparison of improved recognition feature vectors"
改进方法 | MOTA | IDs | IDF1 | MT | ML | Score |
CE | 66.24 | 267 | 66.72 | 40/71 | 8/71 | 69.51 |
CE+Triplet | 67.01 | 232 | 68.44 | 41/71 | 6/71 | 71.19 |
LSCE+Triplet | 67.17 | 226 | 69.54 | 42/71 | 6/71 | 71.85 |
LSCE+Triplet+Center | 67.24 | 190 | 70.18 | 42/71 | 6/71 | 72.03 |
LSCE+Triplet+Center+BNNeck | 68.23 | 176 | 71.56 | 42/71 | 6/71 | 72.62 |
Table 5
Simplification and improvement of tracking process"
跟踪方法 | MOTA | IDs | IDF1 | MT | ML | Score | TT/ms |
特征向量+IoU+卡尔曼滤波 | 62.19 | 6 952 | 17.08 | 35/71 | 8/71 | 54.32 | 25.65 |
特征向量+IoU | 68.23 | 176 | 71.56 | 42/71 | 6/71 | 72.62 | 7.09 |
特征向量 | 69.18 | 266 | 66.51 | 44/71 | 5/71 | 72.65 | 5.83 |
改进特征向量(C++) | 69.73 | 253 | 67.45 | 46/71 | 5/71 | 73.73 | 1.29 |
Table 6
Tracking speed comparison of different deployment methods"
部署方法 | LI/ms | IP/ms | FP/ms | RD/ms | TT/ms | 帧率/FPS |
Train | 1.56 | 2.85 | 47.32 | 83.29 | 5.83 | 7.10 |
Deploy | 1.56 | 2.85 | 28.26 | 83.29 | 5.83 | 8.21 |
Deploy+TensorRT(FP16) | 1.56 | 2.85 | 10.66 | 32.26 | 5.83 | 18.81 |
Deploy+TensorRT(FP16)+C++ | 1.56 | 2.85 | 10.66 | 2.73 | 1.29 | 52.37 |
Table 7
Tracking accuracy comparison of different deployment methods"
部署方法 | MOTA | IDs | IDF1 | MT | ML | Score |
Train | 68.23 | 176 | 71.56 | 42/71 | 6/71 | 72.62 |
Deploy | 68.23 | 176 | 71.56 | 42/71 | 6/71 | 72.62 |
Deploy+TensorRT(FP16) | 67.09 | 187 | 70.05 | 41/71 | 6/71 | 71.61 |
Deploy+TensorRT(FP16)+C++ | 69.07 | 257 | 67.45 | 45/71 | 5/71 | 73.21 |
1 | 王法胜, 鲁明羽, 赵清杰, 等. 粒子滤波算法[J]. 计算机学报, 2014, 37 (8): 1679- 1694. |
WANG F S , LU M Y , ZHAO Q J , et al. Particle filtering algorithm[J]. Chinese Journal of Computers, 2014, 37 (8): 1679- 1694. | |
2 | COLLINS R T. Mean-shift blob tracking through scale space[C]// Proc. of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. DOI: 10.1109/CVPR.2003.1211475. |
3 | WELCH G, BISHOP G. An introduction to the Kalman filter[C]// Proc. of the ACM Special Interest Group on Computer Graphics and Interactive Techniques, 2001. |
4 | BOLME D S, BEVERIDGE J R, DRAPER B A, et al. Visual object tracking using adaptive correlation filters[C]//Proc. of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2010: 2544-2550. |
5 | HENRIQUES J F, CASEIRO R, MARTINS P, et al. Exploiting the circulant structure of tracking-by-detection with kernels[C]// Proc. of the European Conference on Computer Vision, 2012: 702-715. |
6 | HENRIQUES J F , CASEIRO R , MARTINS P , et al. High-speed tracking with kernelized correlation filters[J]. IEEE Trans.on Pattern Analysis and Machine Intelligence, 2014, 37 (3): 583- 596. |
7 | 杜若鹏, 张磊, 卢杨. 上下文感知相关滤波的红外目标跟踪改进算法[J]. 激光与红外, 2020, 50 (7): 839- 845. |
DU R P , ZHANG L , LU Y . Improved infrared target tracking algorithm based on context-aware correlation filter[J]. Laser & Infrared, 2020, 50 (7): 839- 845. | |
8 | DANELLJAN M, ROBINSON A, SHAHBAZ K F, et al. Beyond correlation filters: learning continuous convolution operators for visual tracking[C]//Proc. of the European Conference on Computer Vision, 2016: 472-488. |
9 | 王承赟, 张龙杰, 李相民, 等. 基于改进的核相关滤波算法的红外目标跟踪[J]. 电光与控制, 2021, 28 (7): 9- 13. |
WANG C Y , ZHANG L J , LI X M , et al. Infrared target tracking based on improved kernel correlation filter algorithm[J]. Electronics Optics & Control, 2021, 28 (7): 9- 13. | |
10 | 宋国鹏. 基于孪生网络的单目标跟踪算法研究及其应用[D]. 北京: 北京交通大学, 2020. |
SONG G P. Research and application of single target tracking algorithm based on siamese network[D]. Beijing: Beijing Jiaotong University, 2020. | |
11 |
柳赟, 孙淑艳. 基于自适应模板更新的改进孪生卷积网络目标跟踪算法[J]. 计算机应用与软件, 2021, 38 (4): 145- 151, 230.
doi: 10.3969/j.issn.1000-386x.2021.04.024 |
LIU Y , SUN S Y . Object tracking algorithm based on improved siamese convolutional networks combined with adaptive template updating[J]. Computer Applications and Software, 2021, 38 (4): 145- 151, 230.
doi: 10.3969/j.issn.1000-386x.2021.04.024 |
|
12 | DANELLJAN M, BHAT G, SHAHBAZ K F, et al. Eco: efficient convolution operators for tracking[C]//Proc. of the Conference on Computer Vision and Pattern Recognition, 2017: 6638-6646. |
13 | BERTINETTO L, VALMADRE J, HENRIQUES J F, et al. Fully-convolutional siamese networks for object tracking[C]//Proc. of the European Conference on Computer Vision, 2016: 850-865. |
14 | LI B, YAN J, WU W, et al. High performance visual tracking with siamese region proposal network[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 8971-8980. |
15 | ZHU Z, WANG Q, LI B, et al. Distractor-aware siamese networks for visual object tracking[C]//Proc. of the European Conference on Computer Vision, 2018: 101-117. |
16 | LI B, WU W, WANG Q, et al. SiamRPN++: evolution of siamese visual tracking with very deep networks[C]//Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 4282-4291. |
17 | BEWLEY A, GE Z, OTT L, et al. Simple online and realtime tracking[C]//Proc. of the IEEE International Conference on Image Processing, 2016: 3464-3468. |
18 | WOJKE N, BEWLEY A, PAULUS D. Simple online and realtime tracking with a deep association metric[C]//Proc. of the IEEE International Conference on Image Processing, 2017: 3645-3649. |
19 | WANG Z D, ZHENG L, LIU Y X, et al. Towards real-time multi-object tracking[C]// Proc. of the European Conference on Computer Vision, 2020: 107-122. |
20 | ZHANG Y F , WANG C Y , WANG X G , et al. FairMOT: on the fairness of detection and re-identification in multiple object tracking[J]. arXiv preprint, 2020, |
21 | ZHOU X , WANG D . KRÄHENBVHL P. Objects as points[J]. arXiv preprint, 2019, arXiv, 1904.07850. |
22 | 李震霄, 孙伟, 刘明明, 等. 交通监控场景中的车辆检测与跟踪算法研究[J]. 计算机工程与应用, 2021, 57 (8): 103- 111. |
LI Z X , SUN W , LIU M M , et al. Research on vehicle detection and tracking algorithms in traffic monitoring scenes[J]. Computer Engineering and Applications, 2021, 57 (8): 103- 111. | |
23 |
赵朵朵, 章坚武, 傅剑峰. 基于深度学习的实时人流统计方法研究[J]. 传感技术学报, 2020, 33 (8): 1161- 1168.
doi: 10.3969/j.issn.1004-1699.2020.08.013 |
ZHAO D D , ZHANG J W , FU J F . Research on real-time statistics of people flow based on deep learning[J]. Chinese Journal of Sensors and Actuators, 2020, 33 (8): 1161- 1168.
doi: 10.3969/j.issn.1004-1699.2020.08.013 |
|
24 | 张宏鸣, 汪润, 董佩杰, 等. 基于DeepSORT算法的肉牛多目标跟踪方法[J]. 农业机械学报, 2021, 52 (4): 248- 256. |
ZHANG H M , WANG R , DONG P J , et al. Beef cattle multi-target tracking based on DeepSORT algorithm[J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52 (4): 248- 256. | |
25 | MILAN A , LEAL-TAIXÉ L , REID I , et al. MOT16: a benchmark for multi-object tracking[J]. arXiv preprint, 2016, arXiv, 1603.00831. |
26 | DING X, ZHANG X, MA N, et al. RepVGG: making VGG-style ConvNets great again[C]//Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 13733-13742. |
27 | HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 770-778. |
28 | SIMONYAN K , ZISSERMAN A . Very deep convolutional networks for large-scale image recognition[J]. arXiv preprint, 2014, arXiv, 1409.1556. |
29 | LIN T Y, DOLLÁR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 2117-2125. |
30 | LUO H, GU Y, LIAO X, et al. Bag of tricks and a strong baseline for deep person re-identification[C]//Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, 2019. |
31 | KENDALL A, GAL Y, CIPOLLA R. Multi-task learning using uncertainty to weigh losses for scene geometry and semantics[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 7482-7491. |
[1] | Xiaofeng ZHAO, Yebin XU, Fei WU, Jiahui NIU, Wei CAI, Zhili ZHANG. Ground infrared target detection method based on global sensing mechanism [J]. Systems Engineering and Electronics, 2022, 44(5): 1461-1467. |
[2] | Lifan YIN, Yiqun ZHANG, Shuo WANG, Chenggang SUN. A survey on histogram probabilistic multi-hypothesis tracker technique [J]. Systems Engineering and Electronics, 2021, 43(11): 3118-3125. |
[3] | Zhengjie LI, Junwei XIE, Haowei ZHANG, Zhaojian ZHANG. Joint power and bandwidth allocation algorithm based on collocated MIMO radar [J]. Systems Engineering and Electronics, 2020, 42(5): 1041-1049. |
[4] | Xiaodong LU, Tao CUI, Wei WANG, Cheng CHENG. Multi-target labeled multi-Bernoulli filter with time-delay and registration errors [J]. Systems Engineering and Electronics, 2020, 42(4): 904-911. |
[5] | PENG Huafu, HUANG Gaoming, TIAN Wei, QIU Hao. Labeled multi-Bernoulli filter based on amplitude information [J]. Systems Engineering and Electronics, 2018, 40(12): 2636-2641. |
[6] | LIU Jianye, WANG Hua, ZHOU Wanmeng. LEO constellation sensor resources scheduling algorithm based on Genetic and Simulated annealing [J]. Systems Engineering and Electronics, 2018, 40(11): 2476-. |
[7] | GU Xiaolin, ZHOU Shilin, LEI Lin. Multi-target tracking based on m-best data association and tracklet associatio [J]. Systems Engineering and Electronics, 2017, 39(7): 1640-1646. |
[8] | YUAN Changshun, WANG Jun, XIANG Hong, SUN Jinping. Adaptive δ-GLMB filtering algorithm based on VB approximation [J]. Systems Engineering and Electronics, 2017, 39(2): 237-243. |
[9] | LEI Lei, WANG Xiaodan, QUAN Wen, LUO Xi . Non-competence reliability in multi-classification based on error correcting output codes [J]. Systems Engineering and Electronics, 2017, 39(12): 2637-2645. |
[10] | ZHANG Jinli, LI Min. Infrared target tracking based on matrix S1/2 norm [J]. Systems Engineering and Electronics, 2017, 39(10): 2177-2183. |
[11] | CHEN Hang, ZHANG Bo-yan, CHEN Ying. Multiple hypothesis tracking with adaptive association depth [J]. Systems Engineering and Electronics, 2016, 38(9): 2000-2007. |
[12] | YUAN Changshun, WANG Jun, LEI Peng, SUN Jinping, BI Yanxian. Multi-target tracking based on PHD filter for phased array radar [J]. Systems Engineering and Electronics, 2016, 38(3): 539-544. |
[13] | LU Hong, LI Hong-sheng, FEI Shu-min, CHENG Yong. Block level saliency centroid representation and multi-level association based multi-target tracking [J]. Systems Engineering and Electronics, 2015, 37(9): 2182-2190. |
[14] | LEI Lei, WANG Xiao-dan, LUO Xi, SONG Ya-fei. Hierarchical error correcting output codes based on SVDD [J]. Systems Engineering and Electronics, 2015, 37(8): 1916-1921. |
[15] | ZHU You-qing, ZHOU Shi-lin. Classification-aided GM-PHD filter based on signal feature of radar emitter [J]. Systems Engineering and Electronics, 2015, 37(6): 1273-1279. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||