Systems Engineering and Electronics ›› 2021, Vol. 43 ›› Issue (10): 2902-2910.doi: 10.12305/j.issn.1001-506X.2021.10.25
• Systems Engineering • Previous Articles Next Articles
Chi HAN, Wei XIONG*
Received:
2020-12-25
Online:
2021-10-01
Published:
2021-11-04
Contact:
Wei XIONG
CLC Number:
Chi HAN, Wei XIONG. Operational effectiveness evaluation of space reconnaissance equipment based on SVR optimized by improved grey wolf optimizer[J]. Systems Engineering and Electronics, 2021, 43(10): 2902-2910.
Table 3
Benchmark function"
测试函数 | 维度 | 范围 | Min |
30 | [-100, 100] | 0 | |
30 | [-10, 10] | 0 | |
30 | [-100, 100] | 0 | |
30 | [-5.12, 5.12] | 0 | |
30 | [-32, 32] | 0 | |
30 | [-600, 600] | 0 | |
2 | [-5, 5] | -1.031 6 | |
2 | [-5, 5] | 0.397 9 | |
2 | [-2, 2] | 3 |
Table 4
Comparison of algorithm results"
函数 | PSO | GWO | IGWO_1 | IGWO_2 | IGWO | |||||||||
Average | St.dev | Average | St.dev | Average | St.dev | Average | St.dev | Average | St.dev | |||||
f1 | 3.67e-09 | 5.33e-09 | 3.79e-59 | 6.78e-59 | 1.02e-70 | 1.51e-70 | 8.47e-82 | 2.61e-81 | 7.72e-83 | 1.35e-82 | ||||
f2 | 1.59e-04 | 1.83e-04 | 8.74e-35 | 5.76e-35 | 2.98e-41 | 3.66e-41 | 3.96e-48 | 3.51e-48 | 2.07e-48 | 2.43e-48 | ||||
f3 | 14.304 2 | 4.827 6 | 4.21e-16 | 9.99e-16 | 1.04e-18 | 2.27e-18 | 4.31e-20 | 8.80e-20 | 9.45e-22 | 1.92e-21 | ||||
f4 | 49.748 9 | 10.103 0 | 0.442 0 | 1.397 7 | 5.68e-15 | 1.80e-14 | 0 | 0 | 0 | 0 | ||||
f5 | 1.45e-04 | 3.19e-04 | 1.76e-14 | 3.37e-15 | 1.23e-14 | 3.67e-15 | 7.64e-15 | 1.12e-15 | 7.99e-15 | 0 | ||||
f6 | 0.008 6 | 0.008 8 | 0.003 7 | 0.009 0 | 0.001 7 | 0.003 6 | 0.001 5 | 0.004 6 | 0 | 0 | ||||
f7 | -1.031 6 | 4.24e-08 | -1.031 6 | 7.32e-08 | -1.031 6 | 1.30e-08 | -1.031 6 | 0 | -1.031 6 | 7.43e-09 | ||||
f8 | 0.397 9 | 7.72e-06 | 0.397 9 | 8.64e-06 | 0.397 9 | 2.08e-06 | 0.397 9 | 5.71e-07 | 0.397 9 | 0 | ||||
f9 | 3.000 0 | 5.41e-06 | 3.000 0 | 1.82e-06 | 3.000 0 | 1.52e-05 | 3.000 0 | 4.79e-06 | 3.000 0 | 1.26e-15 |
Table 5
Orbital parameters of the satellite constellation"
编号 | 半长轴/km | 偏心率 | 轨道倾角/(°) | 近地点辐角/(°) | 升交点赤经/(°) | 真近点角/(°) |
LEO1-1/2/3 | 500 | 0 | 45.000 0 | 0 | 0 | 0/120/240 |
LEO2-4/5/6 | 500 | 0 | 45.109 2 | 0 | 89.889 8 | 30.16/150.16/270.16 |
LEO3-7/8/9 | 500 | 0 | 44.999 1 | 0 | 179.780 0 | 60.31/180.31/300.31 |
LEO4-10/11/12 | 500 | 0 | 44.889 7 | 0 | 269.891 0 | 90.16/210.16/330.16 |
Table 6
Data structure of samples"
编号 | x1 | x2 | x3 | x4 | x5 | x6 | 效能 |
1 | 0.617 8 | 0.380 3 | 0.653 3 | 0.949 0 | 0.358 8 | 0.998 7 | 2.085 7 |
2 | 0.186 3 | 0.909 8 | 0.174 7 | 0.904 1 | 0.119 3 | 0.164 5 | 1.412 6 |
3 | 0.077 8 | 0.866 7 | 0.101 8 | 0.728 4 | 0.065 8 | 0.252 6 | 1.358 6 |
4 | 0.072 5 | 0.892 2 | 0.089 8 | 0.563 4 | 0.049 1 | 0.439 4 | 1.526 4 |
⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ |
320 | 0.723 1 | 0.637 8 | 0.709 9 | 0.421 1 | 0.441 2 | 0.164 4 | 1.564 4 |
1 | 徐一帆. 天基海洋移动目标监视的联合调度问题研究[D]. 长沙: 国防科学技术大学, 2011. |
XU Y F. Joint scheduling for space-based maritime moving targets surveillance[D]. Changsha: National University of Defense Technology, 2011. | |
2 | 崔鹏飞, 严洪森. 基于v-SVR的海洋环境下武器效能评估[J]. 计算机技术与发展, 2012, 22 (8): 20- 24. |
CUI P F , YAN H S . Operational effective-ness evaluation of weapon under influence of marine environment based on v-SVR[J]. Computer Technology and Development, 2012, 22 (8): 20- 24. | |
3 | 罗小明, 朱延雷, 何榕. 基于复杂适应系统的装备作战试验体系贡献度评估[J]. 装甲兵工程学院学报, 2015, 29 (2): 1- 6. |
LUO X M , ZHU Y L , HE R . Evaluation of contribution for equipment operational test system based on complex adaptive system[J]. Journal of Academy of Armored Force Engineering, 2015, 29 (2): 1- 6. | |
4 | ZHENG L , ZHOU J W , HU H B , et al. Opera-tional effectiveness analysis of cluster submarine formation torpedo weapon system based on fuzzy AHP comprehensive evaluation[J]. ACM Trans.on Intelligent Systems and Technology, 2019, 2 (3): 17- 21. |
5 | ZHAO Q S, HU W T, XIA B Y, et al. The capability spaces complexity measure method of weapon system of systems[C]// Proc. of the IEEE International Systems Conference, 2020: 291-297. |
6 |
SEBASTIAN M , JOSE M , MIRANDA J . IOWA-SVM: a density-based weighting strategy for SVM classification via OWA operators[J]. IEEE Trans.on Fuzzy Systems, 2020, 28 (9): 2143- 2150.
doi: 10.1109/TFUZZ.2019.2930942 |
7 | VAPNIK V N . The nature of statistical learning theory[M]. New York: Springer, 1995. |
8 | LEI J S , CHEN J F , CAO X . The regression prediction analysis of grouting concretion stone's strength based on SVR[J]. Advanced Materials Research, 2014, 29 (20): 171- 176. |
9 | LI S , FANG H , LIU X Y . Parameter optimization of support vector regression based on sine cosine algorithm[J]. Expert System, 2018, 91 (2): 63- 77. |
10 | 黄发明, 殷坤龙, 张桂荣, 等. 多变量PSO-SVM模型预测滑坡地下水位[J]. 浙江大学学报(工学版), 2015, 49 (6): 1193- 1200. |
HUANG F M , YIN K L , ZHANG G R , et al. Prediction of groundwater level in landslide using multivariable PSO-SVM model[J]. Journal of Zhejiang University (Engineering Science), 2015, 49 (6): 1193- 1200. | |
11 | 曹庆奎, 赵斐. 基于遗传-支持向量回归的煤层底板突水量预测研究[J]. 煤炭学报, 2011, 36 (12): 2097- 2101. |
CAO Q K , ZHAO F . Forecast of water inrush quantity from coal floor based on genetic algorithm-support vector regression[J]. Journal of China Coal Society, 2011, 36 (12): 2097- 2101. | |
12 | HATTA N M , ZAIN A M , SALLEHUDDIN R , et al. Recent studies on optimization method of grey wolf optimizer (GWO): a review[J]. Artificial Intelligence Review, 2018, 18 (2): 2651- 2683. |
13 | WANG X F , ZHAO H , HAN T , et al. A grey wolf optimizer using Gaussian estimation of distribution and its application in the multi-UAV multi-target urban tracking problem[J]. Applied Soft Computing, 2019, 78 (1): 240- 260. |
14 | TIZHOOSH H R. Opposition-based learning: a new scheme for machine intelligence[C]//Proc. of the IEEE International Confe-rence on Computational Intelligence for Modelling, Control & Automation, 2005: 695-701. |
15 | 王田田, 王艳, 纪志成. 基于改进极限学习机的滚动轴承故障诊断[J]. 系统仿真学报, 2018, 30 (11): 4413- 4420. |
WANG T T , WANG Y , JI Z C . Fault diagnosis of rolling bearing based on improved extreme learning machine[J]. Journal of System Simulation, 2018, 30 (11): 4413- 4420. | |
16 | 魏雪, 吴清. 分段复合多尺度模糊熵和IGWO-SVM的脑电情感识别[J]. 计算机应用研究, 2019, 36 (11): 3310- 3314, 3356. |
WEI X , WU Q . EEG emotion recognition based on piecewise complex multi-scale fuzzy entropy and IGWO-SVM algorithm[J]. Application Research of Computers, 2019, 36 (11): 3310- 3314, 3356. | |
17 | 韩驰, 熊伟. 航天侦察装备体系指标关联信息挖掘研究[EB/OL]. [2020-11-02]. http://kns.cnki.net/kcms/detail/11.3092.V.20201030.1745.017.html. |
HAN C, XIONG W. Research on related information mining of space reconnaissance equipment system index[EB/OL]. [2020- 11-02]. http://kns.cnki.net/kcms/detail/11.3092.V.20201030.1745.017.html. | |
18 |
WANG Z , YANG C , OH S K , et al. Robust multi-linear fuzzy svr designed with the aid of fuzzy c-means clustering based on insensitive data information[J]. IEEE Access, 2020, 8, 184997- 185011.
doi: 10.1109/ACCESS.2020.3030083 |
19 | ZHU S , SUN J , LIU Y , et al. The air quality index trend forecasting based on improved error correction model and data preprocessing for 17 port cities in China[J]. Chemosphere, 2020, 252 (11): 126474. |
20 | BESSEDIK S A , DJEKIDEL R , AMEUR A . Performance of different kernel functions for LS-SVM-GWO to estimate flashover voltage of polluted insulators[J]. IET Science Measurement & Technology, 2018, 12 (6): 739- 745. |
21 |
XU L W , WANG H , LIN W , et al. GWO-BP neural network based on performance prediction for mobile multiuser communi- cation networks[J]. IEEE Access, 2019, 7, 152690- 152700.
doi: 10.1109/ACCESS.2019.2948475 |
22 |
ZHU S L , QIU X L , YIN Y R . Two-step-hybrid model based on data preprocessing and intelligent optimization algorithms (CS and GWO) for NO2 and SO2 forecasting[J]. Atmospheric Pollution Research, 2019, 10 (4): 1326- 1335.
doi: 10.1016/j.apr.2019.03.004 |
23 | SINGH N , SINGH S . A novel hybrid GWO-SCA approach for optimization problems[J]. Engineering Science and Technology, 2017, 20 (12): 1586- 1601. |
24 | LIU Y W, FAN S S, FENG Y, et al. Stockbridge damper identification of overhead power lines based on hog feature and GWO-SVM[C]//Proc. of the IEEE 3rd Conference on Energy Internet and Energy System Integration, 2019: 2466-2470. |
25 | 林木, 李小波, 王彦锋, 等. 基于QFD和组合赋权TOPSIS的体系贡献率能效评估[J]. 系统工程与电子技术, 2019, 41 (8): 1802- 1809. |
LIN M , LI X B , WANG Y F , et al. Capability effectiveness evaluation of contribution ratio to system-of-systems based on QFD and combination weights TOPSIS[J]. Systems Engineering and Electronics, 2019, 41 (8): 1802- 1809. | |
26 | YU Z , SHI X , ZHOU J , et al. Prediction of blast-induced rock movement during bench blasting: use of gray wolf optimizer and support vector regression[J]. Natural Resources Research, 2019, 29 (7): 843- 865. |
27 |
LI W , ZHANG J . An innovated integrated model using singular spectrum analysis and support vector regression optimized by intelligent algorithm for rainfall forecasting[J]. Journal of Autonomous Intelligence, 2019, 2 (1): 46- 55.
doi: 10.32629/jai.v2i1.37 |
28 | LI B , LUO C Y , WANG Z Y . Application of GWO-SVM algorithm in arc detection of pantograph[J]. IEEE Access, 2020, 8, 173865- 173873. |
29 |
ZHU A J , XU C P , LI Z , et al. Hybridizing grey wolf optimization with differential evolution for global optimization and test scheduling for 3D stacked SoC[J]. Journal of Systems Engineering and Electronics, 2015, 26 (2): 317- 328.
doi: 10.1109/JSEE.2015.00037 |
30 |
HU Q H , ZHANG S G , YU M , et al. Short-term wind speed or power forecasting with heteroscedastic support vector regression[J]. IEEE Trans.on Sustainable Energy, 2016, 7 (1): 241- 249.
doi: 10.1109/TSTE.2015.2480245 |
31 | ȘENEL F A , GÖKÇE F , YVKSEL A S , et al. A novel hybrid PSO-GWO algorithm for optimization problems[J]. Engineering with Computers, 2018, 35 (3): 1359- 1373. |
32 | CHENG B , JIANG J , TAN Y J . A novel approach for WSoS capability requirement satisfactory degree evaluation using evidential reasoning[J]. System Engineering Theory and Practice, 2011, 31 (11): 2210- 2216. |
33 | LI X X , CHEN H G , LI D X , et al. Combat effectiveness prediction model using ELMAN feedback network[J]. Journal of System Simulation, 2015, 27 (1): 43- 49. |
[1] | Zilong WU, Hong CHEN, Yingke LEI, Xin LI, Hao XIONG. Communication emitter individual identification based on stacked LSTM network [J]. Systems Engineering and Electronics, 2020, 42(12): 2915-2923. |
[2] | HUANG Wei, XU Jiancheng, WU Huaxing, LI Junbing. Missile formation consensus control algorithm based on parameter optimization [J]. Systems Engineering and Electronics, 2018, 40(11): 2528-. |
[3] | YANG Yingjie1, YU Yongli1, ZHANG Liu1, ZHANG Wei2. Sensitivity analysis and parameters optimization for equipment maintenance support simulation system [J]. Systems Engineering and Electronics, 2016, 38(3): 575-581. |
[4] | WANG Jing-cheng1, CAO Hui2, ZHANG Yan-bin2, REN Zhi-wen1. Parameter optimization algorithm of SVDD based on minimizing the density outside [J]. Systems Engineering and Electronics, 2015, 37(6): 1446-1451. |
[5] | LIU Zhong, ZHAO Yan hui. Fractional order missile controller design with optimum structure [J]. Systems Engineering and Electronics, 2014, 36(12): 2490-2495. |
[6] | CHANG Zhi-peng,CHENG Long-sheng. Automatic optimization algorithm of multiple parameters for kernel Fisher discriminant analysis [J]. Journal of Systems Engineering and Electronics, 2013, 35(1): 212-217. |
[7] | ZHANG Xiu-jie, LI Shi-yong, SHEN Yi, SONG Shen-min. Application of harmony search quantum genetic algorithm in image registration [J]. Journal of Systems Engineering and Electronics, 2012, 34(10): 2152-2156. |
[8] | SUN Lin-kai, JIN Jia-shan, GENG Jun-bao. Combined parameter optimization for ε-SVR based on weighted accuracy [J]. Journal of Systems Engineering and Electronics, 2011, 33(8): 1820-1823. |
[9] | GAO Wei-feng, LIU San-yang, JIANG Fei, ZHANG Jian-ke. Hybrid artificial bee colony algorithm [J]. Journal of Systems Engineering and Electronics, 2011, 33(5): 1167-. |
[10] | LIAO Jun, YU Lei, YU Li-xin, LUO Huan. Method of radiation control for phased array radar based on LPI [J]. Journal of Systems Engineering and Electronics, 2011, 33(12): 2638-2642. |
[11] | GAN Min,PENG Hui. Predicting chaotic time series using RBF-AR model with regression weight [J]. Journal of Systems Engineering and Electronics, 2010, 32(4): 820-824. |
[12] | SONG Yanpo,PENG Xiaoqi,HU Zhikun. Meta-parameters optimization method for support vector regression [J]. Journal of Systems Engineering and Electronics, 2010, 32(10): 2238-2242. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||