Systems Engineering and Electronics ›› 2021, Vol. 43 ›› Issue (10): 2782-2788.doi: 10.12305/j.issn.1001-506X.2021.10.10
• New progress in electromagnetic scattering and inverse scattering • Previous Articles Next Articles
Jia DUAN1,2, Lanying CAO1, Yifeng WU2,*
Received:2020-12-28
Online:2021-10-01
Published:2021-11-04
Contact:
Yifeng WU
CLC Number:
Jia DUAN, Lanying CAO, Yifeng WU. Imaging algorithm for SAR based on attributed scattering center models[J]. Systems Engineering and Electronics, 2021, 43(10): 2782-2788.
| 1 | HOVANESSIAN A . Introduction to snthetic aray and iaging rdar[M]. London: Artech House, 1980. |
| 2 | 邱洪彬, 王雪梅, 许哲, 等. 基于二维能量检测的舰船SAR图像阈值分割[J]. 系统工程与电子技术, 2019, 41 (12): 2747- 2753. |
| QIU H B , WANG X M , XU Z , et al. Ship SAR image threshold segmentation based on two-dimensional energy detection[J]. Systems Engineering and Electronics, 2019, 41 (12): 2747- 2753. | |
| 3 | 杨龙, 苏娟, 李响. 基于深度卷积神经网络的SAR舰船目标检测[J]. 系统工程与电子技术, 2019, 41 (9): 1990- 1997. |
| YANG L , SU J , LI X . Ship dtection in SAR images based on deep convolutional neural network[J]. Systems Engineering and Electronics, 2019, 41 (9): 1990- 1997. | |
| 4 | CHATTERJEE A, SAHA J, MUKHOPADHYAY J, et al. Unsupervised land cover classification of hybrid polsar images using deep network[C]//Proc. of the IEEE International Geoscience and Remote Sensing Symposium, 2020: 1719-1722. |
| 5 |
DONG G G , KUABF G Y . Classification on the monogenic scale space: application to target recognition in SAR image[J]. IEEE Trans.on Image Processing, 2015, 24 (8): 2527- 2539.
doi: 10.1109/TIP.2015.2421440 |
| 6 |
ZHANG Y , XIONG W , DONG X C , et al. A novel azimuth spectrum reconstruction and imaging method for moving targets in geosynchronous spaceborne-airborne bistatic multichannel SAR[J]. IEEE Trans.on Geoscience and Remote Sensing, 2020, 58 (8): 5976- 5991.
doi: 10.1109/TGRS.2020.2974531 |
| 7 |
KANG M , KIM K . Ground moving target imaging based on compressive sensing framework with single-channel SAR[J]. IEEE Sensors Journal, 2020, 20 (3): 1238- 1250.
doi: 10.1109/JSEN.2019.2947114 |
| 8 |
ZHANG Y , ZHANG Q M , WANG Y P , et al. An approach to wide-field imaging of linear rail ground-based SAR in high squint multi-angle mode[J]. Journal of Systems Engineering and Electronics, 2020, 31 (4): 722- 733.
doi: 10.23919/JSEE.2020.000047 |
| 9 |
ZHAO Y , ZHAO L J , XIONG B l , et al. Attention receptive pyramid network for ship detection in SAR images[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13, 2738- 2756.
doi: 10.1109/JSTARS.2020.2997081 |
| 10 |
SHAHZAD M , MAURER M , FRAUNDORFER F , et al. Buildings detection in VHR SAR images using fully convolution neural networks[J]. IEEE Trans.on Geoscience and Remote Sensing, 2019, 57 (2): 1100- 1116.
doi: 10.1109/TGRS.2018.2864716 |
| 11 | CHRIS O , SHAUN Q G . Understanding synthetic aperture radar images[M]. Massachusetts: Artech House, 2009. |
| 12 | MÜJDATÇ. Feature enhanced synthetic aperture radar imaging[D]. Boston: Boston University, 2001. |
| 13 |
POTTER L C , MOSES R L . Attributed scattering centers for SAR ATR[J]. IEEE Trans.on Image Processing, 1997, 6 (1): 79- 91.
doi: 10.1109/83.552098 |
| 14 |
CONG Y L , CHEN B , LIU H W , et al. Nonparametric Bayesian attributed scattering center extraction for synthetic aperture radar targets[J]. IEEE Trans.on Signal Processing, 2016, 64 (18): 4723- 4736.
doi: 10.1109/TSP.2016.2569463 |
| 15 | CHIANG H C, MOSES R L, IRVING W W. Performance estimation of model-based automatic target recognition using attributed scattering center features[C]//Proc. of the International Conference on Image Analysis and Processing, 1999: 303-308. |
| 16 |
DING B Y , WEN G F , HUANG X H , et al. Data augmentation by multilevel reconstruction using attributed scattering center for SAR target recognition[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14 (6): 979- 983.
doi: 10.1109/LGRS.2017.2692386 |
| 17 |
ZHANG J S , XING M D , XIE Y Y . FEC: a feature fusion framework for SAR target recognition based on electromagnetic scattering features and deep CNN features[J]. IEEE Trans.on Geoscience and Remote Sensing, 2021, 59 (3): 2174- 2187.
doi: 10.1109/TGRS.2020.3003264 |
| 18 | GAO Y X, XING M D. A method for extracting amplitude attribute of scattering centers in SAR[C]//Proc. of the IEEE International Geoscience and Remote Sensing Symposium, 2016: 2665-2668. |
| 19 |
YANG D W , NI W , DU L , et al. Efficient attributed scatter center extraction based on image-domain sparse representation[J]. IEEE Trans.on Signal Processing, 2020, 68, 4368- 4381.
doi: 10.1109/TSP.2020.3011332 |
| 20 |
ZHAO Y , JIU B , ZHANG L , et al. Fully polarimetric attributed scattering center extraction based on sequential 2D SAR images[J]. IEEE Access, 2019, 7, 58570- 58583.
doi: 10.1109/ACCESS.2019.2914345 |
| 21 |
DING B Y , WEN G J . Target reconstruction based on 3-D scattering center model for robust SAR ATR[J]. IEEE Trans.on Geoscience and Remote Sensing, 2018, 56 (7): 3772- 3785.
doi: 10.1109/TGRS.2018.2810181 |
| 22 |
TING L L , DU L . Target discrimination for SAR ATR based on scattering center feature and k-center one-class classification[J]. IEEE Sensors Journal, 2018, 18 (6): 2453- 2461.
doi: 10.1109/JSEN.2018.2791947 |
| 23 |
LIU W , JIU B , LI F . Attributed scattering center extraction algorithm based on sparse representation with dictionary refinement[J]. IEEE Trans.on Antennas and Propagation, 2017, 65 (5): 2604- 2614.
doi: 10.1109/TAP.2017.2673764 |
| 24 |
ZHANG L M , ZOU B , CAI H J , et al. Multiple-component scattering model for polarimetric SAR image decomposition[J]. IEEE Geoscience and Remote Sensing Letters, 2008, 5 (4): 603- 607.
doi: 10.1109/LGRS.2008.2000795 |
| 25 |
ZHANG L , QIAO Z J , XING M D , et al. High resolution ISAR imaging with sparse stepped-frequency waveforms[J]. IEEE Trans.on Geoscience and Remote Sensing, 2011, 49 (11): 4630- 4651.
doi: 10.1109/TGRS.2011.2151865 |
| 26 | ZHANG L, WU S J, DUAN J. Sparse-aperture ISAR imaging of maneuvering targets with sparse representation[C]//Proc. of the IEEE Radar Conference, 2015: 1623-1626. |
| 27 |
DUAN J , ZHANG L , XING M D , et al. Polarimetric target decomposition based on attributed scattering center model for synthetic aperture radar targets[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11 (12): 2095- 2099.
doi: 10.1109/LGRS.2014.2320053 |
| 28 | LIU C, ZHENG J B, NIE X. Port detection in polarimetric SAR images based on three-component decomposition[C]//Proc. of the IEEE International Geoscience and Remote Sensing Symposium, 2020: 734-737. |
| 29 |
AN W T , LIN M S . Generalized polarimetric entropy: polarimetric information quantitative analyses of model-based incoherent polarimetric decomposition[J]. IEEE Trans.on Geoscience and Remote Sensing, 2021, 59 (3): 2041- 2057.
doi: 10.1109/TGRS.2020.3007693 |
| 30 | JIN Y Q , XU F . Inversions from polarimetric SAR images[J]. IEEE Polarimetric Scattering and SAR Information Retrieval, 2013, 215- 233. |
| [1] | Lei YANG, Su ZHANG, Minghui GAI, Cheng FANG. High-resolution SAR imagery with enhancement of directional structure feature [J]. Systems Engineering and Electronics, 2022, 44(3): 808-818. |
| [2] | Cheng FANG, Huijuan LI, Wen LU, Yumeng SONG, Lei YANG. Multi-feature enhancement algorithm for high resolution SAR based on morphological auto-blocking [J]. Systems Engineering and Electronics, 2022, 44(2): 470-479. |
| [3] | Jinwen LU, Hua YAN, Lei ZHANG, Hongcheng YIN. 3D-GTD model construction method using the shooting and bouncing ray technique [J]. Systems Engineering and Electronics, 2021, 43(8): 2028-2036. |
| [4] | Dou SUN, Shiqi XING, Haifeng GAO, Bo PANG, Yongzhen LI, Xuesong WANG. 3D sparse imaging for non-uniformly sampled SAR based on feature enhancement [J]. Systems Engineering and Electronics, 2021, 43(4): 901-910. |
| [5] | Jiahua XU, Xiaokuan ZHANG, Shuyu ZHENG, Binfeng ZONG, Shuchang ZHENG. GTD model parameter estimation and target recognition based on improved 3D-ESPRIT algorithm [J]. Systems Engineering and Electronics, 2021, 43(2): 336-342. |
| [6] | Lei YANG, Huijuan LI, Bo HUANG, Wei LIU, Pucheng LI. High resolution SAR imagery with structural feature enhancement under two-layer sparse group Lasso [J]. Systems Engineering and Electronics, 2021, 43(2): 351-362. |
| [7] | Juan SU, Long YANG, Hua HUANG, Guodong JIN. Improved SSD algorithm for small-sized SAR ship detection [J]. Systems Engineering and Electronics, 2020, 42(5): 1026-1034. |
| [8] | Yanheng MA, Gen LI, Xuying XIONG, Jianqiang HOU. High-squint compressed sensing SAR imaging mounted on maneuvering platform [J]. Systems Engineering and Electronics, 2020, 42(10): 2197-2206. |
| [9] | GUO Kunyi, WANG Jiaxin, SHENG Xinqing. Modification of complex target scattering center modeling [J]. Systems Engineering and Electronics, 2018, 40(8): 1679-1685. |
| [10] | XU Dan, XING Mengdao, FU Jixiang, SUN Guangcai. Multi-aspect components extraction and fusion based on attributed scattering center model [J]. Systems Engineering and Electronics, 2017, 39(6): 1197-1202. |
| [11] | WU Jia-ni, CHEN Yong-guang, FENG De-jun, WANG Xue-song. Target recognition for polarimetric HRRP based on pre-classification and model matching [J]. Systems Engineering and Electronics, 2016, 38(9): 1969-1974. |
| [12] | LI Jun-xia, SHUI Peng-lang. Refined matched filter based on Canny less oscillation critera [J]. Systems Engineering and Electronics, 2016, 38(7): 1543-1548. |
| [13] | LIU Yan-yang, LI Zhen-fang, SUO Zhi-yong, LI Jin-wei, BAO Zheng. Impact of frequency oscillator errors on GEO SAR imaging performance [J]. Systems Engineering and Electronics, 2015, 37(1): 61-66. |
| [14] |
YE Fan, HE Feng, ZHU Ju-bo, ZHANG Yong-sheng.
Multi-radar signals fusion imaging with frequency-band omissions based on target feature enhancement [J]. Journal of Systems Engineering and Electronics, 2011, 33(10): 2226-2229. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||