Systems Engineering and Electronics ›› 2021, Vol. 43 ›› Issue (5): 1270-1276.doi: 10.12305/j.issn.1001-506X.2021.05.14
• Systems Engineering • Previous Articles Next Articles
Tianzhu REN1,*(), Wanqing XIN2(
), Xijun YAN1(
), Hongyu ZHAO3(
), Hui HUANG1(
)
Received:
2020-05-08
Online:
2021-05-01
Published:
2021-04-27
Contact:
Tianzhu REN
E-mail:fatianbao@buaa.edu.cn;xinwq1965@163.com;yanxj2003@sina.com;13161120042@163.com;15313150909@163.com
CLC Number:
Tianzhu REN, Wanqing XIN, Xijun YAN, Hongyu ZHAO, Hui HUANG. Improved system-of-systems optimization design method for evolutionary architecture[J]. Systems Engineering and Electronics, 2021, 43(5): 1270-1276.
Table 1
Mission evaluation criteria under certain condition"
条件 | 任务 | 标准 |
(1) 海况条件: 3级以下 (2) 近岸条件: 距离岸边50海里以内 (3) 能见度条件: 2 km以上 (4) 遇险总人数条件: 10人以内 | 发现海上险情启动应急响应 | 虚警、误警概率<5% 制定救援方案用时<10 min |
确定海上遇险的搜救范围并派出救援力量 | 定位搜救范围大小<3海里 确定搜救范围用时<10 min | |
救援力量到达指定的搜救位置 | 救援力量到达指定位置时间<80 min | |
搜索遇险人员 | 根据情报搜索遇险人员用时<20 min | |
转运遇险人员 | 转运每个遇险人员用时<15 min |
1 | MULLER G, DAGLI C. Simulation for a coevolved system-of-systems meta-architecture[C]//Proc. of the 11th System of Systems Engineering Conference, 2016. |
2 | WANDERLEY G M P, ABEL M H, PARAISO E C, et al. GAMBAD: a method for developing systems of systems[C]//Proc. of the IEEE 30th International Conference on Tools with Artificial Intelligence, 2018. |
3 | 胡晓峰, 杨镜宇, 张昱. 武器装备体系评估理论与方法的探索与实践[J]. 宇航总体技术, 2018, 5 (1): 1- 11. |
HU X F , YANG J Y , ZHANG Y . Exploration and practice to the theory and method of evaluating weapon system of systems[J]. Astronautical Systems Engineering Technology, 2018, 5 (1): 1- 11. | |
4 |
JIA N P , YANG Z W , YANG K W . Operational effectiveness evaluation of the swarming UAVs combat system based on a system dynamics model[J]. IEEE Access, 2019, 7, 25209- 25224.
doi: 10.1109/ACCESS.2019.2898728 |
5 | DAHMANN J, REBOVICH G, LANE J A, et al. An implemented view of systems engineering for systems of systems[C]//Proc. of the IEEE Aerospace and Electronic Systems Magazine, 2012: 212-217. |
6 | GUARINIELLO C, FANG Z M, DAVENDRALINGAM N, et al. Tool suite to support model based systems engineering-enabled system-of-systems analysis[C]//Proc. of the IEEE Aerospace Conference, 2018. |
7 | GITELMAN L D , SANDLER D G , GAVRILOVA T B , et al. Complex systems management competency for technology modernization[J]. International Journal of Design & Nature and Ecodynamics, 2018, 12 (4): 525- 537. |
8 |
DOVE R , SCHINDEL B , SCRAPPER C . Agile systems engineering process features collective culture, consciousness, and conscience at SSC pacific unmanned systems group[J]. Incose International Symposium, 2016, 26 (1): 982- 1001.
doi: 10.1002/j.2334-5837.2016.00206.x |
9 |
ACHESON P , PAPE L , DAGLI C , et al. Understanding system of systems development using an agent-based wave model[J]. Procedia Computer Science, 2012, 12, 21- 30.
doi: 10.1016/j.procs.2012.09.024 |
10 |
DAVENDRALINGAM N , DELAURENTIS D A . A robust portfolio optimization approach to system of system architectures[J]. Systems Engineering, 2015, 18 (3): 269- 283.
doi: 10.1002/sys.21302 |
11 | KAZMAN R, SCHMID K, NIELSEN C B, et al. Understanding patterns for system of systems integration[C]//Proc. of the International Conference on System of Systems Engineering, 2013: 141-146. |
12 | 王维平, 朱一凡, 王涛, 等. 体系视野下的MBSE[J]. 科技导报, 2019, 37 (7): 12- 21. |
WANG W P , ZHU Y F , WANG T , et al. MBSE from a system of systems point of view[J]. Science & Technology Review, 2019, 37 (7): 12- 21. | |
13 |
AGARWAL S , PAPE L , DAGLI C H , et al. Flexible and intelligent learning architectures for SoS (FILA-SoS): architectural evolution in systems-of-systems[J]. Procedia Computer Science, 2015, 44, 76- 85.
doi: 10.1016/j.procs.2015.03.005 |
14 |
IMANE C , NICOLAS B , SALAH S , et al. Systems of systems: from mission definition to architecture description[J]. Systems Engineering, 2019, 22 (6): 437- 454.
doi: 10.1002/sys.21523 |
15 | FANG Z M , ZHOU X Z , SONG A . Architectural models enabled dynamic optimization for system-of-systems evolution[J]. Complexity, 2020, 1, 1- 14. |
16 | The Joint Chiefs of Staff. CJCSI 3170.01E joint capabilities integration and development system[R]. Washington D C: Department of Defense, 2009. |
17 | 初军田, 李立伟, 李强. 关于建立信息系统联合需求生成机制的思考[J]. 火力与指挥控制, 2018, 43 (11): 3- 8. |
CHU J T , LI L W , LI Q . Considering of the building of the generating mechanism of the joint requirement on information system[J]. Fire Control & Command Control, 2018, 43 (11): 3- 8. | |
18 | SCHLOMER D E , CAMPBELL D G . Strategies to streamline the U.S. army's acquisition approval process[J]. International Journal of Applied Management and Technology, 2018, 17 (1): 58- 67. |
19 | 曲迪, 徐劢, 韩素颖. 基于能力的联合作战指挥信息系统需求分析方法[J]. 指挥信息系统与技术, 2016, 7 (4): 21- 27. |
QU D , XU M , HAN S Y . Capability-based requirement analysis method for joint operation command information system[J]. Command Information System and Technology, 2016, 7 (4): 21- 27. | |
20 | THOMAS B P. A methodology for capability-based technology evaluation for systems-of-systems[D]. Georgia: Georgia Institute of Technology, 2007. |
21 |
MARVASTI A K , FU Y , DORMOHAMMADI S , et al. Optimal operation of active distribution grids: a system of systems framework[J]. IEEE Trans.on Smart Grid, 2014, 5 (3): 1228- 1237.
doi: 10.1109/TSG.2013.2282867 |
22 |
SHU Z , WANG W P , WANG R . Design of an optimized architecture for manned and unmanned combat system-of-systems: formulation and coevolutionary optimization[J]. IEEE Access, 2018, 6, 52725- 52740.
doi: 10.1109/ACCESS.2018.2870969 |
23 | WOLF R A. Multiobjective collaborative optimization of systems of systems[D]. Massachusetts: Massachusetts Institute of Technology, 2005. |
24 | 周健, 龚春林, 粟华, 等. 飞行器体系优化设计问题[J]. 航空学报, 2018, 39 (11): 97- 109. |
ZHOU J , GONG C L , SU H , et al. Optimal design problem of system of systems of flight vehicle[J]. Acta Aeronautica Et Astronautica Sinica, 2018, 39 (11): 97- 109. | |
25 | SOBIESZCZANSKI-SOBIESKI J . Integrated system-of-systems synthesis[J]. AIAA Journal, 2015, 46 (5): 1072- 1080. |
26 | 陶夏妍. 南海海域救助动态值班点部署研究[D]. 大连: 大连海事大学, 2016. |
TAO X Y. Research on dynamic rescue station layout in South China Sea[D]. Dalian: Dalian Maritime University, 2016. | |
27 | FRANK D, HOGAN K, SCHONHOFF S. Application of model-based systems engineering (MBSE) to compare legacy and future forces in mine warfare (MIW) missions[D]. Monterey: Naval Postgraduate School, 2014. |
28 |
FARHANGI H , KONUR D , DAGLI C H , et al. Combining max-min and max-max approaches for robust SoS architecting[J]. Procedia Computer Science, 2016, 95, 103- 110.
doi: 10.1016/j.procs.2016.09.299 |
29 | AGARWAL S. Computational intelligence based complex adaptive system-of systems architecture evolution strategy[D]. Missouri: Missouri University of Science and Technology, 2015. |
30 |
DEB K , PRATAP A , AGARWAL S , et al. A fast and elitist multiobjective genetic algorithm: NSGA-Ⅱ[J]. IEEE Trans.on Evolutionary Computation, 2002, 6 (2): 182- 197.
doi: 10.1109/4235.996017 |
[1] | Luyun QIU, Zhigeng FANG, Liangyan TAO, Qiucheng TAO. Effectiveness evaluation of network SoS based on improved FDNA model [J]. Systems Engineering and Electronics, 2022, 44(12): 3728-3737. |
[2] | Dongliang YIN, Guoheng CUI, Xiaoying HUANG, Huan ZHANG. Interval-valued Pythagorean fuzzy multi-attribute decision-making based on improved score function and prospect theory [J]. Systems Engineering and Electronics, 2022, 44(11): 3463-3469. |
[3] | Qingqing YANG, Yingying GAO, Yu GUO, Boyuan XIA, Kewei YANG. Target search path planning for naval battle field based on deep reinforcement learning [J]. Systems Engineering and Electronics, 2022, 44(11): 3486-3495. |
[4] | Cong WANG, Huiliang SHEN, Yongxiang XIA, Guanghan BAI, Yining FANG. Analysis of critical nodes in equipment support system [J]. Systems Engineering and Electronics, 2022, 44(10): 3134-3142. |
[5] | Zhigeng FANG, Yuexin XIA, Jingru ZHANG, Yi XIONG, Jingyi CHEN. A stimulus-response learning model for Agent-based system process A-GERT network [J]. Systems Engineering and Electronics, 2022, 44(8): 2540-2553. |
[6] | Shunqi HUAN, Zhemei FAN, Jianbo WANG. System-of-systems effectiveness evaluation method based on functional dependency network [J]. Systems Engineering and Electronics, 2022, 44(7): 2191-2200. |
[7] | Jiang JIANG, Qiancheng JIN, Xueming XU, Shuai HOU, Jichao LI. Preliminary study on national defense science and technology system engineering in the era of intelligence [J]. Systems Engineering and Electronics, 2022, 44(6): 1880-1888. |
[8] | Kun CHEN, Ning HUANG, Xiangwei WU, Jingmeng ZHAO. A 5G application fault analysis method considering suppress coupling relationship [J]. Systems Engineering and Electronics, 2022, 44(6): 2043-2050. |
[9] | Dali ZHANG, Hongwei XIA, Chaoxing ZHANG, Guangcheng MA, Changhong WANG. Improved firefly algorithm and its convergence analysis [J]. Systems Engineering and Electronics, 2022, 44(4): 1291-1300. |
[10] | Jingfeng LI, Yunxiang CHEN, Huachun XIANG, Jian WANG. Joint optimization of condition-based maintenance and spare part inventory for multi-component system considering random shock effect [J]. Systems Engineering and Electronics, 2022, 44(3): 875-883. |
[11] | Haojie ZHANG, Rongmin LIANG, Yudong ZHANG. Design of simulation system for UGVs based on human-in-the-loop [J]. Systems Engineering and Electronics, 2022, 44(2): 538-545. |
[12] | Wenming WANG, Jialu DU. Agent path planning based on regular hexagon grid JPS algorithm [J]. Systems Engineering and Electronics, 2021, 43(12): 3635-3642. |
[13] | Xin ZHOU, Weiping WANG, Yifan ZHU, Tao WANG, Tian JING. Unmanned equipment SoS architecture scheme space searchingmethod based on the sequential allocated mechanism [J]. Systems Engineering and Electronics, 2021, 43(11): 3211-3219. |
[14] | Yuhang KE, Yanjun LI, Yuyuan CAO, Xingcheng ZHANG. Research on model-based safety analysis of flight control system [J]. Systems Engineering and Electronics, 2021, 43(11): 3259-3265. |
[15] | Zhiwei CHEN, Jing WANG, Changchao GU, Jianchun ZHANG, Jilong ZHONG. Performance availability and resilience analysis of weapon system of systems considering dynamic reconfiguration [J]. Systems Engineering and Electronics, 2021, 43(8): 2347-2354. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||