Systems Engineering and Electronics ›› 2021, Vol. 43 ›› Issue (5): 1248-1261.doi: 10.12305/j.issn.1001-506X.2021.05.12
• Systems Engineering • Previous Articles Next Articles
Hongzhuan CHEN1,*(
), Aijia ZHAO1(
), Tengjiao LI1(
), Congcong CAI1(
), Shuo CHENG1(
), Chunli XU1,2(
)
Received:2020-07-26
Online:2021-05-01
Published:2021-04-27
Contact:
Hongzhuan CHEN
E-mail:13813922476@163.com;15295556236@163.com;18561379757@163.com;51861195@qq.com;17312303672@163.com;xuchunli@3dimi.com
CLC Number:
Hongzhuan CHEN, Aijia ZHAO, Tengjiao LI, Congcong CAI, Shuo CHENG, Chunli XU. Fuzzy Bayesian network inference fault diagnosis of complex equipment based on fault tree[J]. Systems Engineering and Electronics, 2021, 43(5): 1248-1261.
Table 1
Symbol table of common terms used in fault tree"
| 类型 | 名称 | 符号 | 含义 |
| 事件 | 底事件 | 底事件是构成故障树最底层级的事件, 也就是无法进一步细化的系统中最基本的组成事件, 包括基本事件与非基本事件 | |
| 基本事件 | ![]() | 基本事件是分析中能够清晰掌握其发生规律, 容易针对性改正, 且无需再查明其发生原因的事件 | |
| 非基本事件 | ![]() | 非基本事件是故障树分析中未探明的事件, 原则上需要进一步控明其原因, 但暂时无法获取发生原因或没有必要掌握其原因的事件, 非基本事件对系统的影响微乎其微, 定性分析或定量计算时一般可以忽略不计 | |
| 结果事件 | 结果事件是故障树分析中逻辑门的输出事件, 包括顶事件和中间事件 | ||
| 顶事件 | ![]() | 顶事件在故障树中代表系统整体故障的事件或状态, 是故障树分析中的结果, 也是系统模型中最不希望出现的状态 | |
| 中间事件 | ![]() | 中间事件是构成故障树模型中顶事件和底事件以外的中间层级的事件 | |
| 开关事件 | ![]() | 开关事件是指在正常工作条件下必然发生或必然不发生的事件 | |
| 条件事件 | ![]() | 条件事件是规定逻辑门是否起作用的限制事件 | |
| 逻辑门 | 与门 | ![]() | 与门表示所有输入事件都发生时, 输出事件才发生 |
| 或门 | ![]() | 或门表示只要有一个输入事件发生, 输出事件就发生 | |
| 异或门 | ![]() | 异或门表示只有单个输入事件发生时, 输出事件才发生 | |
| 表决门 | ![]() | r/n表决门表示在n个输入事件中至少有r个事件发生, 输出事件才发生 |
Table 3
Membership symbol of Bayesian Network for complex equipment"
| 符号 | 含义 | 举例说明 |
| Tijk | Tijk=μvk(uij)代表节点uij发生的第k个评语等级的隶属度 | T123表示复杂装备贝叶斯网络中故障层第2个节点的故障发生可能性为“一般”的隶属度 |
| | r${\rm{\bar 1}}$${\rm{\bar 2}}$${\rm{\bar 3}}$表示复杂装备贝叶斯网络中故障层第2个节点的故障不发生可能性为“一般”的隶属度 | |
| riji′j′k | r12345表示复杂装备贝叶斯网络中故障层第2个节点与状态层第4个件节点同时发生故障的可能性为“很低”的隶属度 | |
| r12345′表示复杂装备贝叶斯网络中故障层第2个节点故障发生导致状态层第4个件节点发生故障的可能性为“很低”的隶属度 |
Table 5
Expert evaluation summary table"
| 事件概率 | 可能性/% | |||||||||
| 90~100 | 80~90 | 70~80 | 60~70 | 50~60 | 40~50 | 30~40 | 20~30 | 10~20 | 0~10 | |
| P(H=1|A=1, B=0) | 11 | 1 | - | - | - | - | - | - | - | - |
| P(H=1|A=0, B=1) | - | - | - | - | - | - | - | 4 | 6 | 2 |
| P(I=1|C=1, D=0) | - | - | - | - | - | - | - | 6 | 5 | 1 |
| P(I=1|C=0, D=1) | - | - | - | - | - | - | - | 1 | 3 | 8 |
| P(J=1|E=1, F=1, G=0) | 1 | 7 | 4 | - | - | - | - | - | - | - |
| P(J=1|E=1, F=0, G=1) | - | 7 | 5 | - | - | - | - | - | - | - |
| P(J=1|E=1, F=0, G=0) | - | - | - | - | 1 | 6 | 3 | 2 | - | - |
| P(J=1|E=0, F=1, G=1) | - | - | - | - | - | 1 | 7 | 3 | 1 | - |
| P(J=1|E=0, F=1, G=0) | - | - | - | - | - | - | 1 | 5 | 6 | - |
| P(J=1|E=0, F=0, G=1) | - | - | - | - | - | - | - | 5 | 7 | - |
| P(K=1|H=1, I=1, J=0) | 9 | 3 | - | - | - | - | - | - | - | - |
| P(K=1|H=1, I=0, J=1) | 10 | 2 | - | - | - | - | - | - | - | - |
| P(K=1|H=1, I=0, J=0) | 3 | 4 | 5 | - | - | - | - | - | - | - |
| P(K=1|H=0, I=1, J=1) | 2 | 5 | 5 | - | - | - | - | - | - | - |
| P(K=1|H=0, I=1, J=0) | - | - | - | - | - | 1 | 10 | 1 | - | - |
| P(K=1|H=0, I=0, J=1) | - | 8 | 3 | 1 | - | - | - | - | - | - |
Table 6
Conditional probability table of fuzzy Bayesian network"
| 故障 | 征兆 | 关联强度(条件概率) |
| 热压罐漏压A 检具故障B | 设备故障H | P(H=1|A=1, B=1)=1 P(H=0|A=1, B=1)=0 |
| P(H=1|A=1, B=0)=0.941 7 P(H=0|A=1, B=0)=0.058 3 | ||
| P(H=1|A=0, B=1)=0.166 7 P(H=0|A=0, B=1)=0.833 3 | ||
| P(H=1|A=0, B=0)=0 P(H=0|A=0, B=0)=1 | ||
| 碳纤破损C 蜂窝超尺寸D | 材料故障I | P(I=1|C=1, D=1)=1 P(I=0|C=1, D=1)=0 |
| P(I=1|C=1, D=0)=0.191 7 P(I=0|C=1, D=0)=0.808 3 | ||
| P(I=1|C=0, D=1)=0.091 7 P(I=0|C=0, D=1)=0.908 3 | ||
| P(I=1|C=0, D=0)=0 P(I=1|C=0, D=0)=1 | ||
| 铺贴故障E 机加量偏差F 装配出错G | 操作故障J | P(J=1|E=1, F=1, G=1)=1 P(J=0|E=1, F=1, G=1)=0 |
| P(J=1|E=1, F=1, G=0)=0.82 5 P(J=0|E=1, F=1, G=0)=0.17 5 | ||
| P(J=1|E=1, F=0, G=1)=0.808 3 P(J=0|E=1, F=0, G=1)=0.191 7 | ||
| P(J=1|E=1, F=0, G=0)=0.4 P(J=0|E=1, F=0, G=0)=0.6 | ||
| P(J=1|E=0, F=1, G=1)=0.316 7 P(J=0|E=0, F=1, G=1)=0.683 3 | ||
| P(J=1|E=0, F=1, G=0)=0.208 3 P(J=0|E=0, F=1, G=0)=0.791 7 | ||
| P(J=1|E=0, F=0, G=1)=0.191 7 P(J=0|E=0, F=0, G=1)=0.808 3 | ||
| P(J=1|E=0, F=0, G=0)=0 P(J=0|E=0, F=0, G=0)=1 | ||
| 设备故障H 材料故障I 操作故障J | 复合材料报废K | P(K=1|H=1, I=1, J=1)=1 P(K=0|H=1, I=1, J=1)=0 |
| P(K=1|H=1, I=1, J=0)=0.92 5 P(K=0|H=1, I=1, J=0)=0.07 5 | ||
| P(K=1|H=1, I=0, J=1)=0.933 3 P(K=0|H=1, I=0, J=1)=0.066 7 | ||
| P(K=1|H=1, I=0, J=0)=0.833 3 P(K=0|H=1, I=0, J=0)=0.166 7 | ||
| P(K=1|H=0, I=1, J=1)=0.825 P(K=0|H=0, I=1, J=1)=0.175 | ||
| P(K=1|H=0, I=1, J=0)=0.35 P(K=0|H=0, I=1, J=0)=0.65 | ||
| P(K=1|H=0, I=0, J=1)=0.808 3 P(K=0|H=0, I=0, J=1)=0.191 7 | ||
| P(K=1|H=0, I=0, J=0)=0 P(K=0|H=0, I=0, J=0)=1 |
Table 7
Conditional probability table of traditional Bayesian network"
| 条件概率 | 专家编号 | ||||||||||||
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 均值 | |
| P(H=1|A=1, B=1)=1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| P(H=1|A=1, B=0)=1 | 0.9 | 0.8 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0.975 0 |
| P(H=1|A=0, B=1)=0.2 | 0 | 0 | 0.3 | 0.3 | 0.25 | 0.25 | 0.1 | 0.2 | 0.1 | 0.15 | 0.1 | 0.1 | 0.154 2 |
| P(H=1|A=0, B=0)=0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| P(I=1|C=1, D=1)=1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| P(I=1|C=1, D=0)=0.2 | 0.1 | 0.2 | 0.1 | 0.2 | 0.2 | 0.3 | 0.3 | 0.2 | 0.25 | 0.1 | 0 | 0.25 | 0.183 3 |
| P(I=1|C=0, D=1)=0.1 | 0 | 0.3 | 0 | 0.1 | 0 | 0.1 | 0 | 0.2 | 0 | 0 | 0.05 | 0.05 | 0.066 7 |
| P(I=1|C=0, D=0)=0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| P(J=1|E=1, F=1, G=1)=1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| P(J=1|E=1, F=1, G=0)=0.8 | 0.8 | 0.7 | 0.75 | 0.9 | 0.9 | 0.9 | 0.85 | 0.9 | 0.9 | 0.9 | 0.7 | 0.8 | 0.833 3 |
| P(J=1|E=1, F=0, G=1)=0.8 | 0.9 | 0.85 | 0.85 | 0.8 | 0.8 | 0.8 | 0.7 | 0.8 | 0.8 | 0.9 | 0.7 | 0.8 | 0.809 1 |
| P(J=1|E=1, F=0, G=0)=0.4 | 0.3 | 0.4 | 0.35 | 0.35 | 0.4 | 0.5 | 0.5 | 0.5 | 0.5 | 0.4 | 0.3 | 0.6 | 0.409 1 |
| P(J=1|E=0, F=1, G=1)=0.3 | 0.3 | 0.5 | 0.2 | 0.35 | 0.2 | 0.4 | 0.3 | 0.3 | 0.4 | 0.1 | 0.3 | 0.2 | 0.295 8 |
| P(J=1|E=0, F=1, G=0)=0.2 | 0.3 | 0.1 | 0.3 | 0.4 | 0.1 | 0.2 | 0.2 | 0.15 | 0.1 | 0.2 | 0.1 | 0.3 | 0.204 2 |
| P(J=1|E=0, F=0, G=1)=0.2 | 0.3 | 0.15 | 0.2 | 0.15 | 0.3 | 0.1 | 0.1 | 0.2 | 0.2 | 0.1 | 0.2 | 0.1 | 0.181 8 |
| P(J=1|E=0, F=0, G=0)=0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| P(K=1|H=1, I=1, J=1)=1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| P(K=1|H=1, I=1, J=0)=0.9 | 1 | 0.85 | 0.95 | 1 | 1 | 1 | 0.95 | 0.8 | 1 | 0.9 | 0.8 | 1 | 0.937 5 |
| P(K=1|H=1, I=0, J=1)=0.9 | 1 | 0.85 | 1 | 0.9 | 0.8 | 1 | 0.9 | 0.9 | 1 | 1 | 1 | 1 | 0.945 8 |
| P(K=1|H=1, I=0, J=0)=0.8 | 0.9 | 0.85 | 1 | 0.7 | 0.8 | 1 | 0.8 | 0.9 | 1 | 0.7 | 0.7 | 0.7 | 0.837 5 |
| P(K=1|H=0, I=1, J=1)=0.9 | 0.8 | 0.85 | 0.85 | 0.9 | 0.7 | 1 | 0.8 | 0.8 | 0.9 | 0.7 | 1 | 0.7 | 0.833 3 |
| P(K=1|H=0, I=1, J=0)=0.3 | 0.3 | 0.45 | 0.3 | 0.4 | 3 | 0.2 | 0.4 | 0.3 | 0.35 | 0.3 | 0.3 | 0.35 | 0.554 2 |
| P(K=1|H=0, I=0, J=1)=0.8 | 0.9 | 0.75 | 0.9 | 0.8 | 0.7 | 0.9 | 0.8 | 0.7 | 0.6 | 0.9 | 0.9 | 0.9 | 0.812 5 |
| P(K=1|H=0, I=0, J=0)=0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1 |
HOBDAY M , RUSH H . Technology management in complex product systems (CoPS)[J]. International Journal of Technology Management, 1999, 17 (6): 618- 638.
doi: 10.1504/IJTM.1999.002739 |
| 2 | 闫伟, 何桢, 李岸达. 基于CEM-IG算法的复杂装备关键质量特性识别[J]. 系统工程理论与实践, 2014, 34 (5): 1230- 1236. |
| YAN W , HE Z , LI A D . Identification of critical-to-quality characteristics for complex products using CEM-IG algorithm[J]. System Engineering-Theory & Practice, 2014, 34 (5): 1230- 1236. | |
| 3 |
SHATNAWI Y , AL-KHASSAWENEH M . Fault diagnosis in internal combustion engines using extension neural network[J]. IEEE Trans.on Industrial Electronics, 2014, 61 (3): 1434- 1443.
doi: 10.1109/TIE.2013.2261033 |
| 4 | LI W J , GU S , ZHANG X P , et al. Transfer learning for process fault diagnosis: knowledge transfer from simulation to physical processes[J]. Computers & Chemical Engineering, 2020, 139, 106904. |
| 5 |
SUN H C , HUANG C M , HUANG Y C . Fault diagnosis of steam turbine-generator sets using an EPSO-based support vector classifier[J]. IEEE Trans.on Energy Conversion, 2013, 28 (1): 164- 171.
doi: 10.1109/TEC.2012.2227747 |
| 6 |
CASTEJON C , LARA O , GARCIA-PRADA J C . Automated diagnosis of rolling bearings using MRA and neural networks[J]. Mechanical Systems and Signal Processing, 2010, 24 (1): 289- 99.
doi: 10.1016/j.ymssp.2009.06.004 |
| 7 | SUN J D , YAN C H , WEN J T . Intelligent bearing fault diagnosis method combining compressed data acquisition and deep learning[J]. IEEE Trans.on Instrumentation and Measurement, 2017, 67 (9): 185- 195. |
| 8 |
ZHANG Z Z , LI S M , WANG J R , et al. General normalized sparse filtering: a novel unsupervised learning method for rotating machinery fault diagnosis[J]. Mechanical Systems and Signal Processing, 2019, 124, 596- 612.
doi: 10.1016/j.ymssp.2019.02.006 |
| 9 |
WU C Z , JIANG P C , DING C , et al. Intelligent fault diagnosis of rotating machinery based on one-dimensional convolutional neural network[J]. Computers in Industry, 2019, 108, 53- 61.
doi: 10.1016/j.compind.2018.12.001 |
| 10 |
TIANFIEL D , HUAGLOR Y . Advanced life cycle model for complex product development via stage-aligned information substitutive concurrency and detour[J]. International Journal of Computer Integrated Manufacturing, 2001, 14 (3): 281- 303.
doi: 10.1080/09511920010000165 |
| 11 | SHEN B , CHEN C X . Quality management in outsourced global fashion supply chains: an exploratory case study[J]. Production Planning & Control, 2020, 31 (9): 757- 769. |
| 12 |
LI G , ALCALA C F , QIN S J . Generalized reconstruction-based contributions for output-relevant fault diagnosis with application to the tennessee eastman process[J]. IEEE Trans.on Control Systems Technology, 2011, 19 (5): 1114- 1127.
doi: 10.1109/TCST.2010.2071415 |
| 13 | XIE Z Q , HAO S Z , YE G J , et al. A new algorithm for complex product flexible scheduling with constraint between jobs[J]. Computer & Industrial Engineering, 2009, 57 (3): 766- 772. |
| 14 |
GENG Z Q , WANG Z , HU H X , et al. A fault detection method based on horizontal visibility graph-integrated complex networks: application to complex chemical processes[J]. The Canadian Journal of Chemical Engineering, 2019, 97 (5): 1129- 1138.
doi: 10.1002/cjce.23319 |
| 15 | MARIANI L , PASTORE F , PEZZE M . Dynamic analysis for diagnosing integration faults[J]. IEEE Trans.on Software Engineering, 2001, 37 (4): 486- 508. |
| 16 | PENG K , ZHANG K , YOU B , et al. A quality-based nonlinear fault diagnosis framework focusing on industrial multimode batch processes[J]. IEEE Trans.on Industrial Electronics, 2016, 63 (4): 2615- 2624. |
| 17 |
LIU J . A dynamic modelling method of a rotor-roller bearing-housing system with a localized fault including the additional excitation zone[J]. Journal of Sound and Vibration, 2020, 469, 115144.
doi: 10.1016/j.jsv.2019.115144 |
| 18 |
HAO Y S , SONG L Y , REN B Y , et al. Step-by-step compound faults diagnosis method for equipment based on majorization-minimization and constraint SCA[J]. IEEE/ASME Trans.on Mechatronics, 2019, 24 (6): 2477- 2487.
doi: 10.1109/TMECH.2019.2951589 |
| 19 |
CHENG J S , YANG Y , YANG Y . A rotating machinery fault diagnosis method based on local mean decomposition[J]. Digital Signal Processing, 2012, 22 (2): 356- 366.
doi: 10.1016/j.dsp.2011.09.008 |
| 20 |
TIAN J , MORILLO C , AZARIAN M H . Motor bearing fault detection using spectral kurtosis-based feature extraction coupled with k-nearest neighbor distance analysis[J]. IEEE Trans.on Industrial Electronics, 2016, 63 (3): 1793- 1803.
doi: 10.1109/TIE.2015.2509913 |
| 21 |
XU L J , HUANG J G , WANG H J , et al. A novel method for the diagnosis of the incipient faults in analog circuits based on LDA and HMM[J]. Circuits Systems and Signal Processing, 2010, 29 (4): 577- 600.
doi: 10.1007/s00034-010-9160-1 |
| 22 |
JIANG Q , YAN X . Parallel PCA-KPCA for nonlinear process monitoring[J]. Control Engineering Practice, 2018, 80, 17- 25.
doi: 10.1016/j.conengprac.2018.07.012 |
| 23 |
SIHOMBING F , TORBOL M . Parallel fault tree analysis for accurate reliability of complex systems[J]. Structural Safety, 2018, 72, 41- 53.
doi: 10.1016/j.strusafe.2017.12.003 |
| 24 | SI S B, LIU F H, CAI Z Q. Failure importance analysis models based on bayesian network[C]//Proc. of the IEEE 16th International Conference on Industrial Engineering and Engineering Management, 2009: 151-154. |
| 25 | 孙贇, 王瑛, 李超. 基于UR-MTPGERT网络模型的复杂装备风险传导分析[J]. 北京航空航天大学学报, 2018, 44 (8): 1587- 1595. |
| SUN B , WANG Y , LI C . Complex equipment risk conduction analysis based on UR-MTPGERT model[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44 (8): 1587- 1595. | |
| 26 |
SAHIN F , YAVUZ M , ARNAVUT Z , et al. Fault diagnosis for airplane engines using Bayesian networks and distributed particle swarm optimization[J]. Parallel Computing, 2007, 33 (2): 124- 143.
doi: 10.1016/j.parco.2006.11.005 |
| 27 | SI W T, CAI Z Q, SUN S D, et al. Integration of failure prediction Bayesian networks for complex equipment system[C]//Proc. of the IEEE International Conference on Industrial Engineering and Engineering Management, 2014: 1161-1165. |
| 28 | 蔡志强, 孙树栋, 司书宾, 等. 基于FMECA的复杂装备故障预测贝叶斯网络建模[J]. 系统工程理论与实践, 2013, 33 (1): 187- 193. |
| CAI Z Q , SUN S D , SI S N , et al. Modeling of failure prediction bayesian network based on FMECA[J]. System Engineering-Theory & Practice, 2013, 33 (1): 187- 193. | |
| 29 | 王永攀, 杨江平, 邓翔, 等. 基于贝叶斯网络的复杂装备维修质量评价模型[J]. 系统工程与电子技术, 2017, 39 (3): 569- 576. |
| WANG Y P , YANG J P , DENG X , et al. Assessment model of complex equipment maintenance quality based on bayesian network[J]. Systems Engineering and Electronics, 2017, 39 (3): 569- 576. | |
| 30 | 张家良, 曹建福, 高峰. 结合非线性频谱与贝叶斯网络的复杂装备传动系统故障诊断[J]. 电机与控制学报, 2014, 18 (3): 107- 112. |
| ZHANG J L , CAO J F , GAO F . Fault diagnosis of driving system for complex equipment based on nonlinear spectrum and Bayesian network[J]. Electric Machines and Control, 2014, 18 (3): 107- 112. | |
| 31 |
JUN H B , KIM D . A Bayesian network-based approach for fault analysis[J]. Expert Systems with Applications, 2017, 81, 332- 348.
doi: 10.1016/j.eswa.2017.03.056 |
| 32 |
BOBBIO A , PORTINALE L , MINICHINO M , et al. Improving the analysis of dependable systems by mapping fault trees into bayesian networks[J]. Reliability Engineering and System Safety, 2001, 71 (3): 249- 260.
doi: 10.1016/S0951-8320(00)00077-6 |
| [1] | Enzhi DONG, Zhonghua CHENG, Rongcai WANG. Combined maintenance strategy of complex two-dimensional warranty equipment considering economic dependence [J]. Systems Engineering and Electronics, 2022, 44(7): 2219-2228. |
| [2] | Kun CHEN, Ning HUANG, Xiangwei WU, Jingmeng ZHAO. A 5G application fault analysis method considering suppress coupling relationship [J]. Systems Engineering and Electronics, 2022, 44(6): 2043-2050. |
| [3] | Gang YANG, Xusheng WU, Pan SUN, Hao ZHU, Sheng XIONG. Partition of line replaceable units in complex equipment based on performance [J]. Systems Engineering and Electronics, 2021, 43(8): 2174-2180. |
| [4] | Zhangang YANG, Wenchao HAO, Zheng SUI, Jianying LIU. Reliability analysis of independent power system based on minimum cut sequence set [J]. Systems Engineering and Electronics, 2020, 42(8): 1865-1872. |
| [5] | Sen QIAO, Zhiqiu HUANG, Jinyong WANG, Weijian WAN. DFT quantitative analysis method based on statistical model checking [J]. Systems Engineering and Electronics, 2020, 42(2): 480-488. |
| [6] | LAN Jie, YUAN Hongjie, XIA Jing. Improved method for dynamic fault tree analysis based on discrete time Bayesian network [J]. Systems Engineering and Electronics, 2018, 40(4): 948-953. |
| [7] | WAN Liangqi, CHEN Hongzhuan, OUYANG Linhan, ZHANG Di, LI Yaping. Multi-quality characteristics robust optimization design based on grey-PCE for complex equipment products [J]. Systems Engineering and Electronics, 2018, 40(2): 472-481. |
| [8] | WANG Ying, SUN Yun, MENG Xiangfei, QI Yao, LI Chao. Research on risk transfer GERT of complex equipment systems based on opportunity theory#br# [J]. Systems Engineering and Electronics, 2018, 40(12): 2707-2713. |
| [9] | SHUAI Yong, SONG Tailiang, WANG Jianping. Method on support vector machine prediction considering whole process optimization [J]. Systems Engineering and Electronics, 2017, 39(4): 931-940. |
| [10] | WANG Yongpan, YANG Jiangping, DENG Xiang, HOU Xiaodong. Assessment model of complex equipment maintenance quality based on Bayesian network [J]. Systems Engineering and Electronics, 2017, 39(3): 569-576. |
| [11] | LI Zhiqiang, XU Tingxue, GU Junyuan, AN Jin, LIU Yudong. Reliability analysis of a missile control system by fusing uncertain information [J]. Systems Engineering and Electronics, 2017, 39(12): 2869-2876. |
| [12] | LING Mu, YUAN Hai-wen, MA Zhao, HUANG Cao. Enhanced component connection method and application for conversion of fault trees to binary decision diagrams [J]. Systems Engineering and Electronics, 2016, 38(7): 1600-1605. |
| [13] | JIA Li-min, LIN Shuai. Current status and prospect for the methods of system reliability [J]. Systems Engineering and Electronics, 2015, 37(12): 2887-2893. |
| [14] | LIU Hong-qi1,2, FANG Zhi-geng1,2, TAO Liang-yan1,2. Complex equipment development project planning GERT network “inverse problem” model [J]. Systems Engineering and Electronics, 2015, 37(12): 2758-2763. |
| [15] | LIU Yue-feng, CHEN Shao-dong, ZHAO Zhen-yu, ZHANG An. hreat assessment of manned/unmanned combat aerial vehicle formation air-to-ground attack based on FBNs [J]. Systems Engineering and Electronics, 2012, 34(8): 1635-1639. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||