Systems Engineering and Electronics ›› 2021, Vol. 43 ›› Issue (4): 1057-1068.doi: 10.12305/j.issn.1001-506X.2021.04.24
• Guidance, Navigation and Control • Previous Articles Next Articles
					
													Ronghua DU(
), Xiang ZHANG*(
), Wenhe LIAO(
)
												  
						
						
						
					
				
Received:2020-06-22
															
							
															
							
															
							
																	Online:2021-03-25
															
							
																	Published:2021-03-31
															
						Contact:
								Xiang ZHANG   
																	E-mail:Duronghua1995@126.com;zhxiang2002@126.com;cnwho@mail.njust.edu.cn
																					CLC Number:
Ronghua DU, Xiang ZHANG, Wenhe LIAO. Fast initial relative orbit determination method of angles-only relative navigation[J]. Systems Engineering and Electronics, 2021, 43(4): 1057-1068.
Table 1
Main simulation parameters"
| 参数 | 变量 | 仿真值 | 
| 空间目标初始轨道根数 | (a, e, i, Ω, ω, M) | (6 878.137 km, 0, 40°, 120°, 0°, 50°) | 
| 初始ROE (场景1) | (aδa, aδex, aδey, aδix, aδiy, aδλ) | (0, 0.5, 0, -0.5, 0, -30)km | 
| 初始ROE (场景2) | (aδa, aδex, aδey, aδix, aδiy, aδλ) | (-0.15, 0.3, 0, -0.3, 0, -20)km | 
| 初始ROE (场景3) | (aδa, aδex, aδey, aδix, aδiy, aδλ) | (0, 0, -0.2, 0, 0.2, -5)km | 
| 初始ROE (场景4) | (aδa, aδex, aδey, aδix, aδiy, aδλ) | (0, 0, 0, 0, 0, -0.5)km | 
| 相机测量误差标准差 | σα=σε | 18″ | 
| 相机测量偏差标准差 | σb, α=σb, ε | 5″ | 
| 姿态测量误差标准差 | (σatt, off-axis, σatt, roll) | (6, 40)″ | 
| 1 | RISTIC B , ARULAMPALAM M S . Tracking a manoeuvering target using angle-only measurements: algorithms and perfor-mance[J]. Signal Processing, 2003, 83 (2): 1223- 1238. | 
| 2 | 万卫星, 魏勇, 郭正堂, 等. 从深空探测大国迈向行星科学强国[J]. 中国科学院院刊, 2019, 34 (7): 748- 755. | 
| WAN W X , WEI Y , GUO Z T , et al. Toward a power of planetary science from a gaint of deep space exploration[J]. Bulletin of Chinese Academy of Science, 2019, 34 (7): 748- 755. | |
| 3 | ZHANG Y , WANG X Y , XI K W , et al. Impact analysis of solar irradiance change on precision orbit determination of navigation satellites[J]. Transaction of Nanjing University of Aeronautics and Astronautics, 2019, 36 (6): 889- 901. | 
| 4 |  
											  WANG Y ,  WANG X G ,  CUI N G .  Robust decentralised state estimation for formation flying spacecraft[J]. IET Radar, Sonar and Navigation, 2019, 13 (5): 814- 823. 
																							 doi: 10.1049/iet-rsn.2018.5348  | 
										
| 5 |  
											  LIU R X ,  LIU M ,  LIU Y .  Nonlinear optimal tracking control of spacecraft formation flying with collision avoidance[J]. Transaction of the Institute of Measurement and Control, 2019, 41 (4): 889- 899. 
																							 doi: 10.1177/0142331218773506  | 
										
| 6 | RAJA C. Autonomous orbital rendezvous using angles-only navi-gation[D]. Logan: Utah State University, 2001. | 
| 7 | DEHANN F, BRENT E T, STEVE U, et al. Vision-based rela-tive navigation and control for autonomous spacecraft inspection of an unknown object[C]//Proc. of the Guidance, Navigation, and Control and Co-located Conferences, 2013. | 
| 8 |  
											 梁斌, 何英, 邹瑜, 等.  ToF相机在空间非合作目标近距离测量中的应用[J]. 宇航学报, 2016, 37 (9): 1080- 1088. 
																							 doi: 10.3873/j.issn.1000-1328.2016.09.007  | 
										
|  
											  LIANG B ,  HE Y ,  ZHOU Y , et al.  Application of ToF camera in close-range measurement of uncooperative target in space[J]. Journal of Astronautics, 2016, 37 (9): 1080- 1088. 
																							 doi: 10.3873/j.issn.1000-1328.2016.09.007  | 
										|
| 9 |  
											  GONG B C ,  LI W ,  LI S , et al.  Angles-only initial relative orbit determination algorithm for noncooperative spacecraft proximity operations[J]. Astrodynamics, 2018, 2 (3): 217- 231. 
																							 doi: 10.1007/s42064-018-0022-0  | 
										
| 10 | GAIAS G , ARDAENS J S . Flight demonstration of autonomous noncooperative rendezvous in low earth orbit[J]. Journal of Gui-dance, Control, and Dynamics, 2018, 41 (6): 1137- 1354. | 
| 11 |  
											  WOFFINDEN D C ,  GELLER D K .  Navigating the road to autonomous orbital rendezvous[J]. Journal of Spacecraft and Rockets, 2007, 44 (4): 898- 909. 
																							 doi: 10.2514/1.30734  | 
										
| 12 | 葛祥雨, 黄杰, 周前祥, 等. 空间站在轨维修操作复杂度评价及试验验证[J]. 北京航空航天大学学报, 2019, 45 (11): 2228- 2236. | 
| GE X Y , HUANG J , ZHOU Q X , et al. Evaluation of space station on-orbit maintenance operation complexity and its experimental validation[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45 (11): 2228- 2236. | |
| 13 | DAVID V. Evaluating gooding angles-only orbit determination of space based space surveilliance measurements[C]//Proc. of the 8th US/Russian Space Surveillance Workshop, 2010. | 
| 14 | KEITH L. Space-based relative multitarget tracking[D]. Lola: Missouri University of Science and Technology, 2015. | 
| 15 | PERSSON S , VELDMAN S , BODIN P . PRISMA—A formation flying project in implementation phase[J]. Acta Astronautica, 2009, 65 (9): 1360- 1374. | 
| 16 | CARLSSON A. General control system for both sounding rockets and satellites[C]//Proc. of the 18th ESA Symposium on European Rockets and Balloon Programmes and Related Research, 2007. | 
| 17 | NOTEBORN R, BODIN P, LARSSON R, et al. Flight results from the PRISMA optical line of sight based autonomous rendezvous experiment[C]//Proc. of the 4th International Confe-rence on Spacecraft Formation Flying Missions and Technologies, 2011. | 
| 18 |  
											  D'AMICO S ,  ARDAENS J S ,  LARSSON R .  Spaceborne autonomous formation-flying experiment on the PRISMA mission[J]. Journal of Guidance, Control, and Dynamics, 2012, 35 (3): 834- 850. 
																							 doi: 10.2514/1.55638  | 
										
| 19 |  
											  D'AMICO S ,  ARDAENS J S ,  GAIAS G , et al.  Noncooperative rendezvous using angles-only optical navigation: system design and flight results[J]. Journal of Guidance, Control, and Dynamics, 2013, 36 (6): 1576- 1595. 
																							 doi: 10.2514/1.59236  | 
										
| 20 |  
											  FLORIO S D ,  D'AMICO S ,  RADICE G .  Flight results of precise autonomous orbit keeping experiment on PRISMA mission[J]. Journal of Spacecraft and Rockets, 2013, 50 (3): 662- 674. 
																							 doi: 10.2514/1.A32347  | 
										
| 21 | BODIN P . PRISMA: an in-orbit test bed for guidance, navigation, and control experiments[J]. Journal of Spacecraft and Rockets, 2015, 46 (3): 615- 623. | 
| 22 | GELLER D K . Autonomous orbital rendezvous using angles-only navigation[J]. Massachusetts Institute of Technology, 2012, 30 (5): 1455- 1469. | 
| 23 | GAIAS G , ARDAENS J S . In-orbit experience and lessons learned from the AVANTI experiment[J]. Acta Astronautica, 2018, 1 (42): 1- 11. | 
| 24 | WOFFINDEN D C. Angles-only navigation for autonomous orbital rendezvous[D]. Logan: Utah State University, 2008. | 
| 25 | 龚柏春. 航天器自主交会仅测角相对轨道确定方法研究[D]. 西安: 西北工业大学, 2016. | 
| GONG B C. Research on angles-only relative orbit determination algorithms for spacecraft autonomous rendezvous[D]. Xi'an: Northwestern Polytechnical University, 2016. | |
| 26 | PI J, BANG H. Trajectory design for satellite relative angles-only navigation[C]//Proc. of the 9th International Conference on Mathematical Problems in Engineering, Aerospace and Sciences, 2012: 747-751. | 
| 27 |  
											  PI J ,  BANG H .  Trajectory design for improving observability of angles-only relative navigation between two satellites[J]. Journal of the Astronautical Sciences, 2014, 61 (4): 391- 412. 
																							 doi: 10.1007/s40295-014-0016-y  | 
										
| 28 | JAGAT A, SINCLAIR A. Control of spacecraft relative motion using angles-only navigation[C]//Proc. of the AAS/AIAA Astrodynamics Specialist Conference, 2015. | 
| 29 |  
											  GELLER D K ,  KLEIN I .  Angles-only navigation state observability during orbital proximity operations[J]. Journal of Gui-dance, Control, and Dynamics, 2014, 37 (6): 1976- 1983. 
																							 doi: 10.2514/1.G000133  | 
										
| 30 | SULLIVAN J, KOENIG A, D'AMICO S. Improved maneuver-free approach to angles-only navigation for space rendezvous[C]//Proc. of the 26th AAS/AIAA Space Flight Mechanics Meeting, 2016. | 
| 31 |  
											  GELLER D K ,  LOVELL T A .  Angles-only initial relative orbit determination performance analysis using cylindrical coordinates[J]. The Journal of the Astronautical Sciences, 2017, 64 (1): 72- 96. 
																							 doi: 10.1007/s40295-016-0095-z  | 
										
| 32 | 王楷, 陈统, 徐世杰. 基于双视线测量的相对导航方法[J]. 航空学报, 2011, 32 (6): 1084- 1091. | 
| WANG K , CHEN T , XU S J . Relative navigation method based on dual line-of-sight measurement[J]. Acta Aeronautica Sinica, 2011, 32 (6): 1084- 1091. | |
| 33 |  
											 刘光明, 廖瑛, 文援兰, 等.  基于双星编队的空间非合作目标联合定轨方法[J]. 宇航学报, 2010, 31 (9): 2095- 2100. 
																							 doi: 10.3873/j.issn.1000-1328.2010.09.006  | 
										
|  
											  LIU G M ,  LIAO Y ,  WEN Y L , et al.  Two-satellite formation-based non-cooperative space target integrated orbit determination[J]. Journal of Astronautics, 2010, 31 (9): 2095- 2100. 
																							 doi: 10.3873/j.issn.1000-1328.2010.09.006  | 
										|
| 34 |  
											  WOFFINDEN D C ,  GELLER D K .  Observability criteria for angles-only navigation[J]. IEEE Trans.on Aerospace and Electronic System, 2009, 45 (3): 1194- 1208. 
																							 doi: 10.1109/TAES.2009.5259193  | 
										
| 35 |  
											  ARDAENS J S ,  GAIAS G .  A numerical approach to the pro-blem of angles-only initial relative orbit determination in low earth orbit[J]. Advances in Space Research, 2019, 63, 3884- 3899. 
																							 doi: 10.1016/j.asr.2019.03.001  | 
										
| 36 |  
											  DEBRUIJN F ,  GILL E ,  HOW J .  Comparative analysis of Cartesian and curvilinear Clohessy-Wiltshire equations[J]. Journal of Aerospace Engineering, Sciences and Applications, 2011, 3 (2): 1- 15. 
																							 doi: 10.7446/jaesa.0302.01  | 
										
| 37 |  
											  GIM D W ,  ALFRIEND K T .  State transition matrix of relative motion for the perturbed noncircular reference orbit[J]. Journal of Guidance, Control, and Dynamics, 2003, 26 (6): 956- 971. 
																							 doi: 10.2514/2.6924  | 
										
| 38 | BROUWER D . Solution of the problem of artificial satellite theory without drag[J]. Astronautical Journal, 1959, 64 (9): 378- 397. | 
| 39 | LYDDANE R H . Small eccentricities or inclinations in the brouwer theory of the artificial satellite[J]. Astronomical Journal, 1963, 68 (8): 555- 558. | 
| 40 |  
											  GAIAS G ,  D'AMICO S ,  ARDAENS J S .  Angles-only navigation to a noncooperative satellite using relative orbital elements[J]. Journal of Guidance, Control, and Dynamics, 2014, 37 (2): 439- 451. 
																							 doi: 10.2514/1.61494  | 
										
| 41 |  
											  ARDAENS J S ,  GAIAS G .  Flight demonstration of spaceborne real-time angles-only navigation to a noncooperative target in low earth orbit[J]. Acta Astronautica, 2018, 153, 367- 382. 
																							 doi: 10.1016/j.actaastro.2018.01.044  | 
										
| 42 |  
											  GAIAS G ,  ARDAENS J S ,  MONTENBRUCK O .  Model of J2 perturbed satellite relative motion with time-varying differential drag[J]. Celestial Mechanics and Dynamical Astronomy, 2015, 123 (4): 411- 433. 
																							 doi: 10.1007/s10569-015-9643-2  | 
										
| 43 | MONTENBRUCK O , KIRSCHNER M , D'AMICO S , et al. E/I-vector separation for safe switching of the GRACE formation[J]. Aerospace Science and Technology, 2016, 10 (7): 628- 635. | 
| 44 |  
											  ARDAENS J S ,  D'AMICO S .  Spaceborne autonomous relative control system for dual satellite formations[J]. Journal of Guidance, Control, and Dynamics, 2009, 32 (6): 1859- 1870. 
																							 doi: 10.2514/1.42855  | 
										
| 45 |  
											  ARDAENS J S ,  D'AMICO S .  Nonlinear Kalman filtering for improved angles-only navigation using relative orbital elements[J]. Journal of Guidance, Control, and Dynamics, 2017, 40 (9): 2183- 2200. 
																							 doi: 10.2514/1.G002719  | 
										
| [1] | Yiqiang TANG, Xiaopeng YANG, Shengming ZHU. Low-orbit satellite channel prediction algorithm based on the hybrid CNN-BiLSTM using attention mechanism [J]. Systems Engineering and Electronics, 2022, 44(12): 3863-3870. | 
| [2] | Haolun GU, Guorong ZHAO, Jinbo YAO, Chao GAO. Cross layer MAC protocol design of NNSs based on graded nodes [J]. Systems Engineering and Electronics, 2022, 44(7): 2329-2340. | 
| [3] | Zhe LIANG, Zhaofa ZHOU, Zhihao XU, Wenting LYU, Hui DUAN. Angular rate attitude algorithm based on multi-interval information correction [J]. Systems Engineering and Electronics, 2022, 44(5): 1636-1643. | 
| [4] | Fenghua XIANG, Binfeng YANG, Bo LI, Zhen ZHAO, Jiaojiao GUO. Target orientation mechanism based on heart-shaped modulated magnetic signal [J]. Systems Engineering and Electronics, 2022, 44(4): 1113-1119. | 
| [5] | Yajie XU, Yong XIAN, Bangjie LI, Leliang REN, Shaopeng LI, Weilin GUO. Method for improving the precision of hypersonic vehicle inertial navigation system based on neural network [J]. Systems Engineering and Electronics, 2022, 44(4): 1301-1309. | 
| [6] | Pingan ZHANG, Wei WANG, Min GAO, Yi WANG. Research on SR-CH∞KF for projectile attitude measurement [J]. Systems Engineering and Electronics, 2022, 44(1): 262-269. | 
| [7] | Haolun GU, Guorong ZHAO, Xu HAN, Chao GAO. Routing protocol of networked navigation systems based on mobile sink [J]. Systems Engineering and Electronics, 2021, 43(11): 3380-3389. | 
| [8] | Yiming ZHANG, Jianliang AI. Positioning of aerial refueling drogue and docking control based on binocular vision [J]. Systems Engineering and Electronics, 2021, 43(10): 2940-2953. | 
| [9] | Long MA, Yuzhe LIU, Chaofan DAI, Hang ZHOU, Fengming SUN. Networking redundant MEMS inertial sensor network optimal configuration and fusion processing method [J]. Systems Engineering and Electronics, 2020, 42(11): 2591-2599. | 
| [10] | Run WANG, Binfeng YANG, Huan SUN, Hua GUAN. Rotating permanent magnet positioning technology based on magnetic gradient tensor [J]. Systems Engineering and Electronics, 2020, 42(9): 2085-2090. | 
| [11] | Qiuying WANG, Luyao ZHOU, Zheng GUO, Zhibin MAN. Implementation of double feet mouted position system based on MEMS/ultrasonic module [J]. Systems Engineering and Electronics, 2020, 42(4): 919-925. | 
| [12] | ZHANG Lei, WANG Bo. Application of fast federated H∞ filtering in SINS/GPS integrated navigation system [J]. Journal of Systems Engineering and Electronics, 2009, 31(8): 1940-1943. | 
| Viewed | ||||||
| 
										Full text | 
									
										 | 
								|||||
| 
										Abstract | 
									
										 | 
								|||||