Systems Engineering and Electronics ›› 2020, Vol. 42 ›› Issue (9): 2060-2065.doi: 10.3969/j.issn.1001-506X.2020.09.22
Previous Articles Next Articles
Yadong CHEN1(), Zhongwen CHEN2(
), Jianan WANG1(
), Jiayuan SHAN1(
)
Received:
2020-02-19
Online:
2020-08-26
Published:
2020-08-26
CLC Number:
Yadong CHEN, Zhongwen CHEN, Jianan WANG, Jiayuan SHAN. Cooperative guidance and control method based on air data sensor[J]. Systems Engineering and Electronics, 2020, 42(9): 2060-2065.
1 | JEON I S , LEE J I , TAHK M J . Homing guidance law for cooperative attack of multiple missiles[J]. Journal of Guidance, Control, and Dynamics, 2010, 33 (1): 275- 280. |
2 |
ZHANG Y A , WANG X L , WU H L , et al. A distributed cooperative guidance law for salvo attack of multiple anti-ship missiles[J]. Chinese Journal of Aeronautics, 2015, 28 (5): 1438- 1450.
doi: 10.1016/j.cja.2015.08.009 |
3 | ZHAO E J, CHAO T, WANG S Y, et al. Distributed cooperative guidance law for multiple flight vehicles of saturation attack[C]//Proc.of the AIAA Atmospheric Flight Mechanics Conference, 2016: 3240. |
4 |
CHEN Y D , WANG J N , WANG C Y , et al. A modified cooperative proportional navigation guidance law[J]. Journal of the Franklin Institute, 2019, 356 (11): 5692- 5705.
doi: 10.1016/j.jfranklin.2019.04.013 |
5 | ZHOU J L , YANG J Y . Distributed guidance law design for coopera-tive simultaneous attacks with multiple missiles[J]. Journal of Guidance, Control, and Dynamics, 2016, 39 (10): 2436- 2445. |
6 | DHANANJAY N , GHOSE D . Accurate time-to-go estimation for proportional navigation guidance[J]. Journal of Guidance, Control, and Dynamics, 2014, 37 (4): 1378- 1383. |
7 |
LI G F , WU Y J , XU P Y . Adaptive fault-tolerant cooperative guidance law for simultaneous arrival[J]. Aerospace Science and Technology, 2018, 82-83, 243- 251.
doi: 10.1016/j.ast.2018.09.014 |
8 | LI Z H , DING Z T . Robust cooperative guidance law for simultaneous arrival[J]. IEEE Trans.on Control Systems Technology, 2019, 27 (3): 1360- 1367. |
9 | ZHOU J L , YANG J Y . Guidance law design for impact time attack against moving targets[J]. IEEE Trans.on Aerospace & Electronic Systems, 2018, 54 (5): 2580- 2589. |
10 | HU Q L , HAN T , XIN M . Sliding-mode impact time guidance law design for various target motions[J]. Journal of Guidance, Control, and Dynamics, 2019, 42 (1): 136- 148. |
11 |
WANG J W , ZHANG R . Terminal guidance for a hypersonic vehicle with impact time control[J]. Journal of Guidance, Control, and Dynamics, 2018, 41 (8): 1790- 1798.
doi: 10.2514/1.G003540 |
12 | ZHAO J B , YANG S X . Integrated cooperative guidance framework and cooperative guidance law for multi-missile[J]. Chinese Journal of Aeronautics, 2018, 31 (3): 132- 141. |
13 |
WANG P Y , GUO Y N , MA G F , et al. New differential geome-tric guidance strategies for impact-time control problem[J]. Journal of Guidance, Control, and Dynamics, 2019, 42 (9): 1982- 1992.
doi: 10.2514/1.G004229 |
14 |
TEKIN R , ERER K S , HOLZAPFEL F . Adaptive impact time control via look-angle shaping under varying velocity[J]. Journal of Guidance, Control, and Dynamics, 2017, 40 (12): 3247- 3255.
doi: 10.2514/1.G002981 |
15 | CHEN X T , WANG J Z . Nonsingular sliding-mode control for field-of-view constrained impact time guidance[J]. Journal of Guidance, Control, and Dynamics, 2018, 41 (5): 1214- 1222. |
16 |
HAN T , HU Q L , XIN M . Analytical solution of field-of-view limited guidance with constrained impact and capturability analysis[J]. Aerospace Science and Technology, 2020, 97, 105586.
doi: 10.1016/j.ast.2019.105586 |
17 |
AI X L , WANG L L , YU J Q , et al. Field-of-view constrained two-stage guidance law design for three-dimensional salvo attack of multiple missiles via an optimal control approach[J]. Aerospace Science and Technology, 2019, 85, 334- 346.
doi: 10.1016/j.ast.2018.11.052 |
18 | CHEN Y D , WANG J N , XIN M , et al. Three-dimensional coope-rative homing guidance law with field-of-view constraint[J]. Journal of Guidance, Control, and Dynamics, 2019, 43 (2): 389- 397. |
19 | HE S M , HE W , LIN D F , et al. Consensus-based two-stage salvo attack guidance[J]. IEEE Trans.on Aerospace & Electronic Systems, 2018, 54 (3): 1555- 1566. |
20 |
ZHOU J L , YANG J Y , LI Z K . Simultaneous attack of a stationary target using multiple missiles: a consensus-based approach[J]. Science China Information Sciences, 2017, 60 (7): 070205.
doi: 10.1007/s11432-016-9089-7 |
21 | KANG S , WANG J N , LI G , et al. Optimal cooperative guidance law for salvo attack: an MPC-based consensus perspective[J]. IEEE Trans.on Aerospace & Electronic Systems, 2018, 54 (5): 2397- 2410. |
22 |
ZHANG Y , TANG S J , GUO J . Two-stage cooperative guidance strategy using a prescribed-time optimal consensus method[J]. Aerospace Science and Technology, 2020, 100, 105641.
doi: 10.1016/j.ast.2019.105641 |
23 |
ZHAO Q L , DONG X W , LIANG Z X , et al. Distributed cooperative guidance for multiple missiles with fixed and switching communication topologies[J]. Chinese Journal of Aeronautics, 2017, 30 (4): 1570- 1581.
doi: 10.1016/j.cja.2017.06.009 |
24 | HOU D L , WANG Q , SUN X J , et al. Finite-time cooperative guidance laws for multiple missiles with acceleration saturation constraints[J]. IET Control Theory & Applications, 2015, 9 (10): 1525- 1535. |
25 | 贺敏, 王晓芳, 林海. 信息单向传输带拦截角约束的协同拦截制导律[J]. 系统工程与电子技术, 2019, 41 (8): 1827- 1834. |
HE M , WANG X F , LIN H . Cooperative intercept guidance law with intercept angle constraint based on one-way information transmission[J]. Systems Engineering and Electronics, 2019, 41 (8): 1827- 1834. | |
26 | CHEN X T , WANG J Z . Sliding-mode guidance for simulta-neous control of impact time and angle[J]. Journal of Guidance, Control, and Dynamics, 2019, 42 (2): 394- 401. |
27 | KANG S , TEKIN R , HOLZAPFEL F . Generalized impact time and angle control via look-angle shaping[J]. Journal of Guidance, Control, and Dynamics, 2018, 42 (3): 695- 702. |
28 |
ZHANG Y A , MA G X , LIU A L . Guidance law with impact time and impact angle constraints[J]. Chinese Journal of Aeronautics, 2013, 26 (4): 960- 966.
doi: 10.1016/j.cja.2013.04.037 |
29 |
ZHU J W , SU D L , XIE Y . Impact time and angle control guidance independent of time-to-go prediction[J]. Aerospace Science and Technology, 2019, 86, 818- 825.
doi: 10.1016/j.ast.2019.01.047 |
30 |
HARL N , BALAKRISHNAN S N . Impact time and angle guidance with sliding mode control[J]. IEEE Trans.on Control Systems Technology, 2012, 20 (6): 1436- 1449.
doi: 10.1109/TCST.2011.2169795 |
31 |
HOU Z W , YANG Y , LIU L . Terminal sliding mode control based impact time and angle constrained guidance[J]. Aerospace Science and Technology, 2019, 93, 105142.
doi: 10.1016/j.ast.2019.04.050 |
32 | 李桂英, 于志刚, 张扬. 带有角度约束的机动目标拦截协同制导律[J]. 系统工程与电子技术, 2019, 41 (3): 626- 635. |
LI G Y , YU Z G , ZHANG Y . Cooperative guidance law with angle constraint to intercept maneuvering target[J]. Systems Engineering and Electronics, 2019, 41 (3): 626- 635. | |
33 | 钱杏芳, 林瑞雄, 赵亚男. 导弹飞行力学[M]. 北京: 北京理工大学出版社, 2012. |
QIAN X F , LIN R X , ZHAO Y N . Missile flight mechanics[M]. Beijing: Press of Beijing Institute of Technology, 2012. | |
34 | 林德福, 王辉, 王江, 等. 战术导弹自动驾驶仪设计与制导律分析[M]. 北京: 北京理工大学出版社, 2012. |
LIN D F , WANG H , WANG J , et al. Autopilot design and guidance law analysis for tactical missiles[M]. Beijing: Press of Beijing Institute of Technology, 2012. |
[1] | Zhongxing GAO, Bin PENG, Xiaowei CHEN, Yonggang ZHANG. Discrete sliding mode control for ellipse parameters of vibrating gyroscope [J]. Systems Engineering and Electronics, 2022, 44(1): 226-232. |
[2] | Pingan ZHANG, Wei WANG, Min GAO, Yi WANG. Research on SR-CH∞KF for projectile attitude measurement [J]. Systems Engineering and Electronics, 2022, 44(1): 262-269. |
[3] | Qiuying WANG, Kaiyue LIU, Juan YIN. Research on error estimation of micro-gyroscope and location method based on BPNN for vehicle during GNSS outages [J]. Systems Engineering and Electronics, 2020, 42(5): 1139-1145. |
[4] | LI Guiying, YU Zhigang, ZHANG Yang. Cooperative guidance law with angle constraint to intercept maneuvering target [J]. Systems Engineering and Electronics, 2019, 41(3): 626-635. |
[5] | LI Zheng, ZHANG Zhili, ZHANG Wei, ZHOU Zhaofa, WANG Kunming. Outer field calibration for vehiclebased SINS based on extended observation [J]. Systems Engineering and Electronics, 2017, 39(5): 1113-1118. |
[6] | MA Long, DAI Chaofan, PEI Xin, HUANG Chao, ZHANG Hongyan, SU Zhigang. Fault detection method for redundant configuration of MEMS gyroscope [J]. Systems Engineering and Electronics, 2017, 39(10): 2298-2304. |
[7] | YANG Zhe, LIN De-fu, WANG Hui. Impact time control guidance law with field-of-view limit [J]. Systems Engineering and Electronics, 2016, 38(9): 2122-2128. |
[8] | WANG Wei, DU Dong-zhen, ZHOU Jia-xin, ZHAO Qing. Control method of mismatched disturbances for MEMS triaxial gyroscope [J]. Systems Engineering and Electronics, 2016, 38(7): 1638-1643. |
[9] | WANG Jie, GUAN En-yi, ZHU Fu-tao, HU Xiao-guang, DING Zhu-shun, WU Yun-jie. Leader follower coordination combat model with WSN oriented data link [J]. Systems Engineering and Electronics, 2016, 38(6): 1306-1313. |
[10] | CHENG Jian-hua, QI Bing, ZHAO Lin. Design of compensation system for temperature drift errors of interferometric fiber optical gyroscopes [J]. Systems Engineering and Electronics, 2016, 38(6): 1383-1389. |
[11] | LIU Jieyu, SHEN Qiang, LI Can, QIN Weiwei. Fusion method of MEMS gyro array signals based on optimal KF [J]. Systems Engineering and Electronics, 2016, 38(12): 2705-2710. |
[12] | CHEN Zhi-xiang, TAN Li-long, CHEN Li-hua. Robust, time-suboptimal controller for damping systems of gyroscopes [J]. Systems Engineering and Electronics, 2016, 38(11): 2624-2629. |
[13] | ZHOU Jie, LIANG Yan, WANG Xiao-xu, PAN Quan. Noise reduction of MEMS gyroscope based on MUBF algorithm [J]. Systems Engineering and Electronics, 2016, 38(11): 2457-2461. |
[14] | WANG Ping, WANG Hua, REN Yuan. Measurement and control integrated method for spacecraft attitude based on MSCMGs with pyramid configuration [J]. Systems Engineering and Electronics, 2016, 38(1): 123-129. |
[15] | LIU Jie-yu, YU Guo-qiang, YANG Jian-ye. High precision error compensation method for double-axis rotation modulated ring laser strapdown inertial navigation system [J]. Systems Engineering and Electronics, 2015, 37(1): 148-154. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||