Systems Engineering and Electronics ›› 2020, Vol. 42 ›› Issue (1): 90-100.doi: 10.3969/j.issn.1001-506X.2020.01.13
Previous Articles Next Articles
Wubin MA1,2(), Rui WANG1(
), Weichao WANG2(
), Yahui WU1,*(
), Su DENG1(
), Hongbin HUANG1(
)
Received:
2019-04-24
Online:
2020-01-01
Published:
2019-12-23
Contact:
Yahui WU
E-mail:mawubin417@163.com;ruiwang@nudt.edu.cn;w.wang3@lboro.ac.uk;yahui_wu@nudt.edu.cn;sudeng@nudt.edu.cn;hbhuang@nudt.edu.cn
Supported by:
CLC Number:
Wubin MA, Rui WANG, Weichao WANG, Yahui WU, Su DENG, Hongbin HUANG. Micro-service composition deployment and scheduling strategy based on evolutionary multi-objective optimization[J]. Systems Engineering and Electronics, 2020, 42(1): 90-100.
1 | KWAN A, JACOBSEN H A, CHAN A, et al. Microservices in the modern software world[C]//Proc.of the 26th Annual International Conference on Computer Science and Software Engineering, 2016: 297-299. |
2 | VIGGIATO M, TERRA R, ROCHA H, et al. Microservices in practice: a survey study[C]//Proc.of the 6th Brazilian Workshop on Software Visualization, Evolution, and Maintenance, 2018: 189-198. |
3 | HASSAN S, BAHSOON R, KAZMAN R. Microservice transition and its granularity problem: a systematic mapping study[J]. arXiv preprint, 2019: arXiv: 1903.11665. |
4 | ALSHUQAYRAN N, ALI N, EVANS R. Towards micro service architecture recovery: an empirical study[C]//Proc.of the IEEE International Conference on Software Architecture, 2018: 4701-4709. |
5 | HEORHIADI V, JAMJOOM H T, RAJAGOPALAN S. Failure recovery testing framework for microservice-based applications[P]. America, 842045, 2017. |
6 | VILLAMIZAR M, GARCES O, OCHOA L, et al. Infrastructure cost comparison of running web applications in the cloud using AWS lambda and monolithic and microservice architectures[C]//Proc.of the 16th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing, 2016: 179-182. |
7 | DAYA S, VAN DUY N, EATI K, et al. Microservices from theory to practice: creating applications in IBM bluemix using the microservices approach[EB/OL].[2018-06-05]. http://www.redbooks.ibm.com/abstracts/sg248275.html. |
8 | SHARMA D , ANANDAN R , MANIKANDAN A , et al. Building micro service for user engagement[J]. International Journal of Engineering&Technology, 2018, 7 (4): 420- 422. |
9 | PICCIALLI F , BENEDUSI P , AMATO F . S-InTime:a social cloud analytical service oriented system[J]. Future Generation Computer Systems, 2018, 80 (3): 229- 241. |
10 | REN Z, WANG W, WU G, et al. Migrating web applications from monolithic structure to microservices architecture[C]//Proc.of the 10th Asia-Pacific Symposium on Internetware, 2018: 3555-3559. |
11 | ZHU X . Case Ⅱ:micro platform, major innovation-WeChat-based ecosystem of innovation[M]. Singapore: Springer, 2018: 33- 52. |
12 | BOUZARY H , CHEN F F . Service optimal selection and composition in cloud manufacturing:a comprehensive survey[J]. The International Journal of Advanced Manufacturing Technology, 2018, 97 (1/4): 795- 808. |
13 | LAHMAR F , MEZNI H . Multicloud service composition:a survey of current approaches and issues[J]. Journal of Software:Evolution and Process, 2018, 30 (10): 1- 24. |
14 |
ZHANG Y , TAO F , LIU Y , et al. Long short-term utility aware optimal selection of manufacturing service composition towards Industrial Internet platform[J]. IEEE Trans.on Industrial Informatics, 2019, 15 (6): 3712- 3722.
doi: 10.1109/TII.2019.2892777 |
15 |
林闯, 陈莹, 黄霁崴, 等. 服务计算中服务质量的多目标优化模型与求解研究[J]. 计算机学报, 2015, 38 (10): 1907- 1923.
doi: 10.11897/SP.J.1016.2015.01907 |
LIN C , CHEN Y , HUANG J W , et al. A survey on models and solutions of multi-objective optimization for qos in services computing[J]. Chinese Journal of Computers, 2015, 38 (10): 1907- 1923.
doi: 10.11897/SP.J.1016.2015.01907 |
|
16 |
SEGHIR F , KHABABA A . A hybrid approach using genetic and fruit fly optimization algorithms for QoS-aware cloud service composition[J]. Journal of Intelligent Manufacturing, 2018, 29 (8): 1773- 1792.
doi: 10.1007/s10845-016-1215-0 |
17 | HUANG J, LI S, DUAN Q, et al. QoS correlation-aware service composition for unified network-cloud service provi-sioning[C]//Proc.of the IEEE Global Communications Conference, 2016: 1-6. |
18 | WANG T , LI C , YUAN Y , et al. An evolutionary game approach for manufacturing service allocation management in cloud manufacturing[J]. Computers&Industrial Engineering, 2019, 133 (1): 231- 240. |
19 | ZHOU J , YAO X . Multi-population parallel self-adaptive differential artificial bee colony algorithm with application in large-scale service composition for cloud manufacturing[J]. Applied Soft Computing, 2017, 56 (3): 379- 397. |
20 | BOUZARY H , CHEN F F . A hybrid grey wolf optimizer algorithm with evolutionary operators for optimal QoS-aware service composition and optimal selection in cloud manufacturing[J]. The International Journal of Advanced Manufacturing Technology, 2019, 101 (9/12): 2771- 2784. |
21 | NA J, LIN K J, HUANG Z, et al. An evolutionary game approach on iot service selection for balancing device energy consumption[C]//Proc.of the 12th IEEE International Conference on e-Business Engineering, 2015: 331-338. |
22 | SAMANTA A, LI Y, ESPOSITO F. Battle of microservices: towards latency-optimal heuristic scheduling for edge computing[C]//Proc.of the IEEE Conference on Network Softwarization, 2019: 298-308. |
23 | LLOYD W, RAMESH S, CHINTHALAPATI S, et al. Serverless computing: an investigation of factors influencing microservice performance[C]//Proc.of the IEEE International Conference on Cloud Engineering, 2018: 159-169. |
24 | BACK T, ANDRIKOPOULOS V. Using a microbenchmark to compare function as a service solution[C]//Proc.of the European Conference on Service-Oriented and Cloud Computing, 2018: 146-160. |
25 |
FILIP I D , POP F , SERBANESCU C , et al. Microservices scheduling model over heterogeneous cloud-edge environments as support for iot applications[J]. IEEE Internet of Things Journal, 2018, 5 (4): 2672- 2681.
doi: 10.1109/JIOT.2018.2792940 |
26 | AHUJA R P S, NEDBAL M, SREEDHAR R. Systems and methods for deploying microservices in a networked microservices system[P]. American: 15/338-001, 2018. |
27 |
JAMSHIDI P , PAHL C , MENDON A N C , et al. Microservices:the journey so far and challenges ahead[J]. IEEE Software, 2018, 35 (3): 24- 35.
doi: 10.1109/MS.2018.2141039 |
28 | BALMAKHTAR M, PERSSON C J, RAJAGOPAL A. Secure cloud computing framework[P]. America: 10/243-959, 2019. |
29 |
QU B , ZHU Y , JIAO Y , et al. A survey on multi-objective evolutionary algorithms for the solution of the environmental economic dispatch problems[J]. Swarm and Evolutionary Computation, 2018, 38, 1- 11.
doi: 10.1016/j.swevo.2017.06.002 |
30 |
DEB K , PRATAP A , AGARWAL S , et al. A fast and elitist multi-objective genetic algorithm:NSGA-Ⅱ[J]. IEEE Trans.on Evolutionary Computation, 2002, 6 (2): 182- 197.
doi: 10.1109/4235.996017 |
31 |
DEB K , JAIN H . An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part Ⅰ:solving problems with box constraints[J]. IEEE Trans.on Evolutionary Computation, 2014, 18 (4): 577- 601.
doi: 10.1109/TEVC.2013.2281535 |
32 |
ZHANG Q , LI H . MOEA/D:a multiobjective evolutionary algorithm based on decomposition[J]. IEEE Trans.on Evolutionary Computation, 2007, 11 (6): 712- 731.
doi: 10.1109/TEVC.2007.892759 |
[1] | Shiying YAN, Kefei YAN, Wei FANG, Hengyang LU. Large-scale multi-objective algorithm based on neighborhood adaptive of differential evolution [J]. Systems Engineering and Electronics, 2022, 44(7): 2112-2124. |
[2] | Qian LIU, Yunjun LU, Kebin CHEN, Mengyao HAN, Liang GUO. Combat task decomposition EVA method based on binary constraints of task subject [J]. Systems Engineering and Electronics, 2022, 44(7): 2201-2210. |
[3] | Rongwei CUI, Wei HAN, Xichao SU, Liguo WANG, Yujie LIU. Integrated optimization of carrier-based aircraft flight deck operations scheduling and resource configuration for pre-flight preparation stage [J]. Systems Engineering and Electronics, 2021, 43(7): 1884-1893. |
[4] | Boyuan XIA, Kewei YANG, Zhiwei YANG, Xiaoke ZHANG, Danling ZHAO. Multi-objective optimization of equipment portfolio based on kill-web evaluation [J]. Systems Engineering and Electronics, 2021, 43(2): 399-409. |
[5] | Chunming TIAN, An YANG, Le YE, Jianxing LI, Yuchen HE. End-to-end antenna optimization based on Bayesian optimization algorithm [J]. Systems Engineering and Electronics, 2021, 43(12): 3413-3419. |
[6] | Lei LAI, Dewei WU, Kun ZOU, Kun HAN, Hailin LI. Three dimensional route planning of UAV based on the multi-criterion interactive membrane evolutionary algorithm [J]. Systems Engineering and Electronics, 2021, 43(1): 138-146. |
[7] | Yadong WANG, Quan SHI, Wei XIA, Cai CHEN. Structure optimization of spare parts supply network based on hyper heuristic algorithm [J]. Systems Engineering and Electronics, 2020, 42(3): 620-629. |
[8] | Chunshan DING. Survey on progress and prospect of sensor management [J]. Systems Engineering and Electronics, 2020, 42(12): 2761-2770. |
[9] | LI Ruiyang, WANG Zhixue, YU Minggang, HE Hongyue. Multi-objective portfolio optimization of system-of-systems based on robust capabilities#br# [J]. Systems Engineering and Electronics, 2019, 41(5): 1034-1042. |
[10] | SUN Peng, WU Junsheng, WANG Xun, JIAO Zhiqiang, ZHANG Jieyong. Dynamic resources scheduling method based on multi-objective optimization in C2 organization [J]. Systems Engineering and Electronics, 2019, 41(4): 793-800. |
[11] | CHU Xiaogeng, MA Zhengwei, CHEN Xingjun. Look-ahead margin-greedy constructive algorithm for the multi-objective optimization of the weapon target assignment problem [J]. Systems Engineering and Electronics, 2019, 41(10): 2252-2259. |
[12] | XU Hao, XING Qinghua, WANG Wei. WTA for air and missile defense based on fuzzy multi-objective programming [J]. Systems Engineering and Electronics, 2018, 40(3): 563-570. |
[13] | LI Zhiliang, LI Xiaojiang, ZHANG Donglai. Proactive scheduling of agile imaging satellite based on improved differential evolution algorithm [J]. Systems Engineering and Electronics, 2018, 40(2): 353-359. |
[14] | FANG Wei, ZHANG Lingzhi. Learning of fuzzy cognitive maps using multi-objective evolutionary algorithm [J]. Systems Engineering and Electronics, 2018, 40(2): 447-455. |
[15] | HAN Bowen, YAO Peiyang. Coalition formation of manned/unmanned aerial vehicle cluster based on Holon organization [J]. Systems Engineering and Electronics, 2018, 40(1): 91-97. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||