Systems Engineering and Electronics ›› 2025, Vol. 47 ›› Issue (3): 753-767.doi: 10.12305/j.issn.1001-506X.2025.03.08
• Sensors and Signal Processing • Previous Articles
Yujia JIA, Siqian ZHANG, Tao TANG, Gangyao KUANG
Received:
2023-05-25
Online:
2025-03-28
Published:
2025-04-18
Contact:
Siqian ZHANG
CLC Number:
Yujia JIA, Siqian ZHANG, Tao TANG, Gangyao KUANG. Blind super-resolution reconstruction of airborne SAR real-time transmission images with enhanced scattering features[J]. Systems Engineering and Electronics, 2025, 47(3): 753-767.
Table 1
Numerical evaluation results of large scene SAR images"
图像编号 | 评估指标 | 低分辨率图像 | 高分辨率图像 | 超分辨重建图像 | 提升百分比/% |
1 | HVSNR | 4.108 0 | 6.485 4 | 5.692 4 | 38.57 |
γ/dB | 3.594 4 | 3.191 8 | 3.258 1 | 9.36 | |
2 | HVSNR | 4.843 3 | 6.632 2 | 6.225 3 | 28.53 |
γ/dB | 5.136 2 | 3.720 0 | 3.854 8 | 24.95 | |
3 | HVSNR | 5.499 2 | 7.777 2 | 7.035 2 | 27.93 |
γ/dB | 4.736 5 | 3.687 7 | 3.673 9 | 22.43 |
Table 2
Numerical evaluation results of large scene image slices"
切片编号 | 数据类型 | 全局指标 | 局部指标 | |||
μ | σ | n | v | |||
1 | 高分辨率 | 54.63 | 58.09 | 730 | 249.62 | |
超分辨 | 54.09 | 52.32 | 700 | 235.27 | ||
相对误差/% | 0.99 | 9.93 | 4.11 | 5.75 | ||
2 | 高分辨率 | 35.96 | 27.36 | 150 | 228.09 | |
超分辨 | 34.41 | 29.25 | 186 | 227.68 | ||
相对误差/% | 4.31 | 6.91 | 24 | 0.18 | ||
3 | 高分辨率 | 60.71 | 41.80 | 620 | 227.59 | |
超分辨 | 77.96 | 43.52 | 698 | 230.90 | ||
相对误差/% | 28.41 | 4.11 | 12.58 | 1.45 | ||
4 | 高分辨率 | 50.05 | 38.29 | 432 | 236.20 | |
超分辨 | 51.72 | 37.69 | 396 | 230.78 | ||
相对误差/% | 3.34 | 1.57 | 14.58 | 2.29 | ||
5 | 高分辨率 | 56.68 | 56.12 | 720 | 241.75 | |
超分辨 | 61.53 | 48.72 | 631 | 232.27 | ||
相对误差/% | 8.56 | 13.19 | 12.36 | 3.92 | ||
6 | 高分辨率 | 35.72 | 20.06 | 38 | 229.61 | |
超分辨 | 39.56 | 20.98 | 43 | 227.58 | ||
相对误差/% | 10.75 | 4.54 | 13.16 | 0.88 |
Table 4
Numerical evaluation of test datasets with different network structures"
实验方法 | HVSNR | γ/dB | 全局指标/% | 局部指标/% | |||
μ | σ | n | v | ||||
高分辨率 | 2.168 9 | 3.334 4 | - | - | - | - | |
低分辨率 | 1.076 6 | 4.313 1 | 115.03 | 46.78 | 285.07 | 2.04 | |
CycleGAN[ | 1.735 3 | 4.048 4 | 18.67 | 18.49 | 41.09 | 7.96 | |
CycleGAN+Lper(·) | 1.879 1 | 3.935 7 | 20.27 | 14.13 | 39.55 | 4.95 | |
CycleGAN+CBAM | 1.824 2 | 3.871 7 | 21.27 | 12.62 | 34.54 | 3.87 | |
本文方法 | 1.954 6 | 3.775 1 | 17.53 | 12.81 | 30.51 | 3.52 |
1 | RAN L , LIU Z , LI T , et al. Extension of map-drift algorithm for highly squinted SAR autofocus[J]. IEEE Journal of Selected Topics in Applied Earth Observations & Remote Sensing, 2017, 10 (9): 4032- 4044. |
2 |
ZHAO L , XIE T , PERRIE W , et al. Detection of sea surface temperature fronts from SAR images[J]. Journal of Atmospheric and Oceanic Technology, 2022, 39 (12): 1919- 1926.
doi: 10.1175/JTECH-D-22-0009.1 |
3 |
SINGH G , VENKATARAMAN G , YAMAGUCHI Y , et al. Capability assessment of fully polarimetric ALOS PALSAR data for discriminating wet snow from other scattering types in mountainous regions[J]. IEEE Trans.on Geoscience and Remote Sensing, 2014, 52 (2): 1177- 1196.
doi: 10.1109/TGRS.2013.2248369 |
4 | CAO C J , CUI Z Y , WANG L Y , et al. Cost-sensitive awareness-based SAR automatic target recognition for imbalanced data[J]. IEEE Trans.on Geoscience and Remote Sensing, 2022, 60, 5205316. |
5 | 曲长文, 何友, 龚沈光. 机载SAR发展概况[J]. 现代雷达, 2002, 24 (1): 1-10, 14. |
QU C W , HE Y , GONG S G . Overview of airborne SAR deve-lopment[J]. Modern Radar, 2002, 24 (1): 1-10, 14. | |
6 | 张玉玲, 王鹏, 曲长文. 微型SAR发展状况[J]. 舰船电子对抗, 2008, 31 (5): 51- 55. |
ZHANG Y L , WANG P , QU C W . Development situation of miniature SAR[J]. Shipboard Electronic Countermeasure, 2008, 31 (5): 51- 55. | |
7 |
PARKER J A , KENYON R V , TROXEL D E . Comparison of interpolating methods for image resampling[J]. IEEE Trans.on Medical Imaging, 1983, 2 (1): 31- 39.
doi: 10.1109/TMI.1983.4307610 |
8 |
SHEPPARD D G , PANCHAPAKESAN K , BILGIN A , et al. Lapped nonlinear interpolative vector quantizatoin and image super-resolution[J]. IEEE Trans.on Image Processing, 2000, 9 (2): 295- 298.
doi: 10.1109/83.821746 |
9 |
MICHAEL E , ARIE F . Super-resolution reconstruction of image sequences[J]. IEEE Trans.on Pattern Analysis and Machine Intelligence, 1999, 21 (9): 817- 834.
doi: 10.1109/34.790425 |
10 | SCHULTZ R R, STEVENSON R L. Improved definition video frame enhancement[C]//Proc. of the International Conference on Acoustics, Speech, and Signal Processing, 1995: 2169-2172. |
11 | FREEMAN W T , JONES T R , PASZTOR E C . Example-based super-resolution[J]. IEEE Computer Graphics & Applications, 2002, 22 (2): 56- 65. |
12 | YANG J C , WRIGHT J , HUANG T S , et al. Image super-resolution via sparse representation[J]. IEEE Trans.on Image Processing, 2010, 19 (11): 2861- 2873. |
13 | XIAO G Y, ZHANG L. SAR image super-resolution reconstruction based on full-resolution discrimination[C]//Proc. of the IEEE International Conference on Image Processing, 2022: 691-695. |
14 | MOUSA A , BADRAN Y , SALAMA G , et al. Regression layer-based convolution neural network for synthetic aperture radar images: denoising and super-resolution[J]. The Visual Computer, 2023, 39 (4): 1295- 1306. |
15 | 闵锐, 杨学志, 董张玉, 等. 结构增强型生成对抗网络SAR图像超分辨率重建[J]. 地理与地理信息科学, 2021, 37 (2): 47- 53. |
MIN R , YANG X Z , DONG Z Y , et al. Structure enhanced generative adversarial network SAR image super-resolution reconstruction[J]. Geography and Geo-Information Science, 2021, 37 (2): 47- 53. | |
16 | SHEN H F , LIN L P , LI J , et al. A residual convolutional neural network for polarimetric SAR image super-resolution[J]. ISPRS Journal of Photogrammetry & Remote Sensing, 2020, 161, 90- 108. |
17 | WU Z R , ZHAO Z Y , MA P F , et al. Real-world DEM super-resolution based on generative adversarial networks for improving InSAR topographic phase simulation[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14, 8373- 8385. |
18 | WU W F , HUANG X , SHAO Z F , et al. SAR-DRDNet: a SAR image despeckling network with detail recovery[J]. Neurocomputing, 2022, 493, 253- 267. |
19 | LIU S Q , LEI Y , ZHANG L Y , et al. MRDDANet: a multiscale residual dense dual attention network for SAR image denoising[J]. IEEE Trans.on Geoscience and Remote Sensing, 2022, 60, 5214213. |
20 | ZHANG K, LIANG J Y, VAN G L, et al. Designing a practical degradation model for deep blind image super-resolution[C]//Proc. of the IEEE/CVF International Conference on Computer Vision, 2021: 4771-4780. |
21 | WANG X T, XIE L B, DONG C, et al. Real-ESRGAN: training real-world blind super-resolution with pure synthetic data[C]//Proc. of the IEEE/CVF International Conference on Computer Vision Workshops, 2021: 1905-1914. |
22 | SHOCKER A, COHEN N, IRANI M. Zero-shot super-resolution using deep internal learning[C]//Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018: 3118-3126. |
23 | CHANG T W, CHIU W C, HUANG C C. Find the way back: invertible kernel estimator for blind image super-resolution[C]//Proc. of the IEEE International Conference on Acoustics, Speech and Signal Processing, 2022: 2145-2149. |
24 | LIU A R , LIU Y H , GU J J , et al. Blind image super-resolution: a survey and beyond[J]. IEEE Trans.on Pattern Analysis and Machine Intelligence, 2023, 45 (5): 5461- 5480. |
25 | YUAN Y, LIU S Y, ZHANG J W, et al. Unsupervised image super-resolution using cycle-in-cycle generative adversarial networks[C]//Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, 2018. |
26 | GOODFELLOW I J, POUGET-ABADIE J, MIRZA M. Gene-rative adversarial nets[C]//Proc. of the 27th International Conference on Neural Information Processing Systems, 2014: 2672-2680. |
27 | 易拓源, 户盼鹤, 刘振. 基于改进CycleGAN的ISAR图像超分辨方法[J]. 信号处理, 2023, 39 (2): 323- 334. |
YI T Y , HU P H , LIU Z . ISAR images super-resolution method based on ameliorated CycleGAN[J]. Journal of Signal Processing, 2023, 39 (2): 323- 334. | |
28 | ZHU J Y, PARK T, ISO-LA P, et al. Unpaired image-to-image translation using cycle-consistent adversarial networks[C]//Proc. of the IEEE International Conference on Computer Vision, 2017. |
29 | AO D Y , DUMITRU C O , SCHWARZ G , et al. Dialectical GAN for SAR image translation: from Sentinel-1 to TerraSAR-X[J]. Remote Sensing, 2018, 10 (10): 1597. |
30 | 李萌, 刘畅. 基于特征复用的膨胀-残差网络的SAR图像超分辨重建[J]. 雷达学报, 2020, 9 (2): 363- 372. |
LI M , LIU C . Super-resolution reconstruction of SAR images based on feature reuse dilated-residual convolutional neural networks[J]. Journal of Radars, 2020, 9 (2): 363- 372. | |
31 | LUO Z Y , YU J P , LIU Z H . The super-resolution reconstruction of SAR image based on the improved FSRCNN[J]. The Journal of Engineering, 2019, 2019 (19): 5975- 5978. |
32 | YANG W, MA Z Q, SHI Y R. SAR image super-resolution based on artificial intelligence[C]//Proc. of the IEEE International Geoscience and Remote Sensing Symposium, 2022. |
33 | WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]//Proc. of the 15th European Conference on Computer Vision, 2018. |
34 | ZHANG W L, LIU Y H, DONG C, et al. RankSRGAN: gene-rative adversarial networks with ranker for image super-reso-lution[C]//Proc. of the IEEE/CVF International Conference on Computer Vision, 2019. |
35 | BLAU Y, MECHREZ R, TIMOFTE R, et al. The 2018 PIRM challenge on perceptual image super-resolution[C]//Proc. of the European Conference on Computer Vision, 2018. |
36 | LIU Y J, YU Z, LI C S. A novel quality evaluation algorithm for SAR image based on human visual system[C]//Proc. of the IEEE International Geoscience and Remote Sensing Sympo-sium, 2013. |
37 | SELVARAJU R R, COGSWELL M, DAS A, et al. Grad-CAM: visual explanations from deep networks via gradient-based localization[C]//Proc. of the IEEE International Conference on Computer Vision, 2017. |
[1] | Lan ZHANG, Biao ZHANG, Tianyi LIANG, Huijie ZHU. Research progress on generative adversarial network for electromagnetic information intelligent control [J]. Systems Engineering and Electronics, 2025, 47(3): 730-744. |
[2] | Wei FANG, Tingting ZHANG, Kaiwen TAN, Miao TANG. Air combat situation assessment based on differential window generative adversarial network [J]. Systems Engineering and Electronics, 2024, 46(8): 2738-2746. |
[3] | Lan MA, Shijun MENG, Zhijun WU. Intention mining for civil aviation radiotelephony communication based on BERT and generative adversarial [J]. Systems Engineering and Electronics, 2024, 46(2): 740-750. |
[4] | Shiyan PANG, Jingjing HAO, Lining XING, Xu TAN. Weakly supervised domain adaptation algorithm for building extraction from remote sensing images [J]. Systems Engineering and Electronics, 2023, 45(6): 1616-1623. |
[5] | Li CHEN, Zihan FANG, Liquan MEI. DSS signal generation algorithm based on GAN [J]. Systems Engineering and Electronics, 2023, 45(5): 1544-1552. |
[6] | Haoran ZENG, Yunwen FENG, Cheng LU, Weihuang PAN. Spare parts consumption forecast method based on improved generative adversarial network for domestic civil aircraft [J]. Systems Engineering and Electronics, 2023, 45(10): 3132-3138. |
[7] | Bowei QIN, Lei JIANG, Hua XU, Weiyu NIU. Open-set recognition algorithm for modulation signal based on RE-GAN [J]. Systems Engineering and Electronics, 2023, 45(10): 3321-3328. |
[8] | Rongxiang LIU, Lin WU, Zhige XIE, Honglin LIU. Auxiliary situation analysis for air defense system based on generative adversarial network [J]. Systems Engineering and Electronics, 2022, 44(8): 2522-2529. |
[9] | Kai SHAO, Miaomiao ZHU, Guangyu WANG. Modulation recognition method based on generative adversarial andconvolutional neural network [J]. Systems Engineering and Electronics, 2022, 44(3): 1036-1043. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||