Systems Engineering and Electronics ›› 2024, Vol. 46 ›› Issue (10): 3416-3426.doi: 10.12305/j.issn.1001-506X.2024.10.19
• Systems Engineering • Previous Articles
Xin JIN1,2, Yufeng HE1,*
Received:
2023-10-07
Online:
2024-09-25
Published:
2024-10-22
Contact:
Yufeng HE
CLC Number:
Xin JIN, Yufeng HE. Method for automatic generation of space effective payload test paths based on SysML[J]. Systems Engineering and Electronics, 2024, 46(10): 3416-3426.
Table 4
Information of SysML activity diagram model"
信息列表名称 | 信息列表格式 | 释义 |
节点列表 | [{行动1名称, 行动1的xmi.id, X1, Y1, Owner}, …] | 节点列表由多个元组组成,每个元组中存储一个行动的名字和xmi.id, X1和Y1分别为几何中心在图中的横纵坐标以及其所在泳道的xmi.id |
泳道列表 | [[{泳道名称, 泳道的xmi.id,激活行动名称, 元素1的xmi.id}…], …] | 泳道列表由多个子列表构成,每个子列表由多个元组构成,子列表中的第一个元组申明泳道的名字和xmi.id, 以及泳道的激活行动的名字和xmi.id,其他元组为该泳道包含元素的名字与xmi.id。其中,泳道的激活行动定义为泳道内所有行动中必须首先被执行的行动 |
可访问列表 | [{当前节点名称, 当前节点的xmi.id}, {可访问节点1名称, 可访问节点的xmi.id}…] | 可访问列表由多个元组构成,第一个元组为当前节点的名字和xmi.id,其他元组为当前节点可访问的节点名字与xmi.id |
初始结束节点列表 | [{初始节点名称, 初始节点的xmi.id}, {结束节点名称, 结束节点的xmi.id}] | 活动图的初始行动节点和结束行动节点的名字和xmi.id,一般初始行动的类型为Initial,结束行动的类型为Final |
控制流列表 | [{行动1的xmi.id, 行动2的xmi.id}, …] | 控制流列表由多个元组构成,每个元组记录了控制流的初始行动和结束行动的xmi.id |
Table 5
Serial number of actions"
行动 | 编号 |
行动开始 | A1 |
行动终止 | A2 |
实验单元加电 | A3 |
实验单元断电 | A4 |
实验数据信息采集开始 | A5 |
实验数据信息采集结束 | A6 |
实验数据信息下行 | A7 |
F1 | F1 |
相机开始采集 | A8 |
相机停止采集 | A9 |
相机信息转存到硬盘 | A10 |
F2 | F2 |
广角相机开始观测电热丝位置 | A11 |
步进电机移动电热丝至点火位置 | A12 |
电热丝点火 | A13 |
步进电机复原至原位 | A14 |
广角相机关 | A15 |
隔膜泵循环过滤开始 | A16 |
隔膜泵循环过滤结束 | A17 |
燃料剂比例阀开 | A18 |
燃料高压电磁阀开 | A19 |
燃料质量流量计控制 | A20 |
燃料质量流量计控制置零 | A21 |
燃料高压电磁阀关 | A22 |
燃料剂比例阀关 | A23 |
中心氧化剂比例阀开 | A24 |
氧化剂电磁阀加电 | A25 |
氧化剂质量流量设置 | A26 |
氧化剂质量流量置零 | A27 |
氧化剂电磁阀断电 | A28 |
氧化剂比例阀关 | A29 |
氮气主机加电 | A30 |
氮气截止阀开 | A31 |
稀释剂比例阀开 | A32 |
氮气质量流量配置 | A33 |
氮气质量流量配置置零 | A34 |
稀释剂比例阀关 | A35 |
截止阀关 | A36 |
氮气主机断电 | A37 |
1 |
GUIBAUDA,LEGROSG,CONSALVIJ L,et al.Fire safety in spacecraft: past incidents and deep space challenges[J].Acta Astronautica,2022,195,344-354.
doi: 10.1016/j.actaastro.2022.01.021 |
2 | CLARK J B. Human spaceflight accidents: the USSR/Russian space program[M]//YOUNG L R, SUTTON J P. Handbook of bioastronautics. Cham: Springer, 2021. |
3 | BARRATTM R,BAKERE S,POOLS L.Principles of clinical medicine for space flight[M].New York:Springer,2019. |
4 | CLARK J B. Human space flight mishaps and incidents: an overview[M]//YOUNG L R, SUTTON J P. Handbook of bioas- tronautics. Cham: Springer, 2021. |
5 | 吕笑慰,王华茂,闫金栋.基于状态图的航天器测试用例设计[J].航天器工程,2014,23(6):135-140. |
LYUX W,WANGH M,YANJ D.Research of statecharts-based test case design in spacecraft test[J].Spacecraft Engineering,2014,23(6):135-140. | |
6 | SOTO L, LEWIS K, SWETERLITSCH J. Ground testing of an oxygen concentrator in a simulated International Space Station (ISS) cabin environment[C]//Proc. of the International Confe-rence on Environmental Systems, 2023. |
7 |
JIX Y,LIY Z,LIUG Q,et al.A brief review of ground and flight failures of Chinese spacecraft[J].Progress in Aerospace Sciences,2019,107,19-29.
doi: 10.1016/j.paerosci.2019.04.002 |
8 | MANG J L, QIU Z L, PAN W T, et al. GGTS: FPGA-based general ground test system for space-borne equipment[C]//Proc. of the IEEE 6th International Conference on Computer and Communication Systems, 2021: 976-981. |
9 | WANG Y, LU X J, ZOU S C, et al. Satellite communication ground test system based on computer simulation technology[C]// Proc. of the IEEE 3rd International Conference on Electronic Technology, Communication and Information, 2023: 1817-1820. |
10 | MA Y X, SI C M, XING J J, et al. Ground test equipment and method for disturbance characteristics of space manipulator operations[C]//Proc. of the 41st Chinese Control Conference, 2022: 5901-5904. |
11 | 闫金栋,王华茂,李大明,等.基于系统工程的航天器专业化测试模式探索与实践[J].航天器工程,2017,26(5):99-108. |
YANJ D,WANGH M,LID M,et al.Exploration and practice on spacecraft specialization test mode based on systems engineering[J].Spacecraft Engineering,2017,26(5):99-108. | |
12 | XU Z F, PENG K, LI Z, et al. Design and implementation of automatic test system for multi-cabin joint test of space station[C]// Proc. of the 34th Chinese Control and Decision Conference, 2022: 5347-5352. |
13 | 潘顺良,赵吉明,吕晔,等.我国载人航天器综合测试技术[J].航天器工程,2022,31(6):184-190. |
PANS L,ZHAOJ M,LYUY,et al.China manned spacecraft integrated test technology[J].Spacecraft Engineering,2022,31(6):184-190. | |
14 | YI R R, ZHANG Y L, ZHANG Z Y, et al. Research on mo-dular intelligent automatic test system for spacecraft[C]//Proc. of the Chinese Automation Congress, 2017: 3550-3553. |
15 | 王子豪. 基于需求模型的航天软件测试自动化方法研究[D]. 北京: 中国运载火箭技术研究院, 2019. |
WANG Z H. Research on test automation method of aerospace software based on requirement model[D]. Beijing: China Aca-demy of Launch Vehicle Technology, 2019. | |
16 |
殷永峰,郑本焘,陆民燕,等.基于UML实时扩展的嵌入式软件测试用例生成技术[J].系统工程与电子技术,2011,33(3):694-699.
doi: 10.3969/j.issn.1001-506X.2011.03.45 |
YINY F,ZHENGB T,LUM Y,et al.Research on embedded software test case generation based on real time extended UML[J].Systems Engineering and Electronics,2011,33(3):694-699.
doi: 10.3969/j.issn.1001-506X.2011.03.45 |
|
17 | TIAN Y, YIN B B, LI C L. A model-based test cases generation method for spacecraft software[C]//Proc. of the 8th International Conference on Dependable Systems and Their Applications, 2021: 373-382. |
18 | BORKYJ M,BRADLEYT H.Model based reliability systems engineering[M].Switzerland:Springer International Publishing AG,2019. |
19 |
ZHENGX C,HUX D,LUJ,et al.An aircraft assembly process formalism and verification method based on semantic modeling and MBSE[J].Advanced Engineering Informatics,2024,60,102412.
doi: 10.1016/j.aei.2024.102412 |
20 |
DELSINGJ,KULCSARG,HAUGENØ.SysML modeling of service-oriented system-of-systems[J].Innovations in Systems and Software Engineering,2024,20,269-285.
doi: 10.1007/s11334-022-00455-5 |
21 |
KESKINB,SALMANB,KOSEOGLUO.Architecting a BIM-based digital twin platform for airport asset management: a model-based system engineering with SysML approach[J].Journal of Construction Engineering and Management,2022,148(5):4022020.
doi: 10.1061/(ASCE)CO.1943-7862.0002271 |
22 | CHEN F F, ZHAO Y R, LI Z. Research on software test case generation based on SysML[C]//Proc. of the International Symposium on Intelligent Robotics and Systems, 2023: 173-177. |
23 | YANG X Y, ZHANG J, ZHOU S, et al. Generating test scenarios using SysML activity diagram[C]//Proc. of the 8th International Conference on Dependable Systems and their Applications, 2021: 257-264. |
24 | BROWN G, JAIN A. Model-based test engineering-increasing the value test provides in the wide world of digital engineering[C]//Proc. of the IEEE Autotestcon, 2023. |
25 |
LIH Y,WANGM,XIAOG,et al.Verification and test case development method based on civil aircraft operation scenario[J].Aerospace Systems,2022,5(1):65-74.
doi: 10.1007/s42401-021-00090-1 |
26 | BACHMANN T, WAL D V D, BIJL M V D, et al. Translating EULYNX SysML models into symbolic transition systems for model-based testing of railway signaling systems[C]//Proc. of the IEEE Conference on Software Testing, Verification and Validation, 2022: 355-364. |
27 |
OUERDIN,AZIZIM,LANETJ L,et al.EMV card: generation of test cases based on SysML models[J].IERI Procedia,2013,4,133-138.
doi: 10.1016/j.ieri.2013.11.020 |
28 | YINY F,XUY Q,MIAOW K,et al.An automated test case generation approach based on activity diagrams of SysML[J].International Journal of Performability Engineering,2017,13(6):922-936. |
29 | XU Y Q, WU L B. An automatic test case generation method based on SysML activity diagram[C]//Proc. of the IOP Confe-rence Series: Materials Science and Engineering, 2019. |
30 | GAUTHIER J M. Test generation for RTES from SysML models: context, motivations and research proposal[C]//Proc. of the IEEE 6th International Conference on Software Testing, Verification and Validation, 2013: 503-504. |
31 | EDITHP.SysML distilled: a brief guide to the systems modeling language[J].Insight,2015,17(2):63. |
32 | FRIEDENTHALS,MOOREA,STEINERR.A practical guide to SysML: the systems modeling language[M].San Fransisco:Morgan Kaufmann,2014. |
33 | DORIGOM,BIRATTARIM,STUTZLET.Ant colony optimization[J].IEEE Computational Intelligence Magazine,2006,1(4):28-39. |
[1] | Haoliang REN, Jianchao ZHANG, Huichuan CHENG. Modeling and analysis method of weapon equipment system capability requirements based on SysML [J]. Systems Engineering and Electronics, 2023, 45(9): 2843-2851. |
[2] | Ran HUANG, Qibo PENG, Xinfeng WU, Qing NI. Architecture modeling for manned lunar landing based on DoDAF [J]. Systems Engineering and Electronics, 2023, 45(7): 2131-2137. |
[3] | Xinkang SONG, Shanghong ZHAO, Xiang WANG, Shaowei HAO. Collaborative construction and embedding strategy of aviation information network service function chain [J]. Systems Engineering and Electronics, 2022, 44(11): 3556-3563. |
[4] | Mingjie SUN, Lin ZHOU, Yunlong YU, Jinling GU. Ant colony optimization based polymorphism-aware routing algorithm for AdHoc UAV network [J]. Systems Engineering and Electronics, 2021, 43(9): 2562-2572. |
[5] | Wenhao WANG, Wenhao BI, An ZHANG, Qiucen FAN. Function modeling method of civil aircraft system based on MBSE [J]. Systems Engineering and Electronics, 2021, 43(10): 2884-2892. |
[6] | Songlian REN, Haiquan SUN, Peng JIN. Multi-satellite scheduling problem based on task merging mechanism [J]. Systems Engineering and Electronics, 2021, 43(1): 171-180. |
[7] | Lili LI, Xiaoyong ZHANG, Wei YUE. Broadcasting strategy based on greedy and ant colony algorithm in mobile ad hoc networks [J]. Systems Engineering and Electronics, 2020, 42(4): 926-932. |
[8] | KE Wenjun, CHEN Jing, JIANG Shan. System simulation and verification method based on Petri net model [J]. Systems Engineering and Electronics, 2017, 39(4): 924-930. |
[9] | HE Lei, LIU Xiao-lu, CHEN Ying-wu, XING Li-ning. Cloud modeling and processing method for agile observing satellite mission planning [J]. Systems Engineering and Electronics, 2016, 38(4): 852-858. |
[10] | XIAO Qin-kun, Wang Yi, LUO Yi-chuang. 3D path planning of ant colony algorithm using partial differential elevation modeling [J]. Systems Engineering and Electronics, 2015, 37(7): 1550-1561. |
[11] | CHANG Tian-qing, CHEN Jun-wei, HAO Na, MA Dian-zhe. Terminating control of ant colony algorithm for armored unit dynamic weapon-target assignment [J]. Systems Engineering and Electronics, 2015, 37(2): 343-347. |
[12] | LI Hong-liang, SONG Gui-bao, CAO Yan-jie. Cooperative path planning of multiple anti-ship missiles to multiple targets [J]. Systems Engineering and Electronics, 2013, 35(10): 2102-2109. |
[13] | LI Ji-ying, DANG Jian-wu. Ant colony algorithm and application based on quantum space [J]. Systems Engineering and Electronics, 2013, 35(10): 2229-2232. |
[14] | GUO Hao, WU Guohua, QIU Dishan. Intensive task clustering method for agile imaging satellites [J]. Journal of Systems Engineering and Electronics, 2012, 34(5): 931-935. |
[15] | WU Hong, WANG Wei-ping, YANG Feng. Discretization method of continuous variables in Bayesian network parameter learning [J]. Journal of Systems Engineering and Electronics, 2012, 34(10): 2157-2162. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||