Systems Engineering and Electronics ›› 2024, Vol. 46 ›› Issue (9): 3019-3030.doi: 10.12305/j.issn.1001-506X.2024.09.14
• Sensors and Signal Processing • Previous Articles Next Articles
Baofeng GUO1, Liting JIAO1, Sheng LI2, Xiaoxiu ZHU3,*, Dongfang XUE1, Huixian SUN1
Received:
2023-05-08
Online:
2024-08-30
Published:
2024-09-12
Contact:
Xiaoxiu ZHU
CLC Number:
Baofeng GUO, Liting JIAO, Sheng LI, Xiaoxiu ZHU, Dongfang XUE, Huixian SUN. Multi-view fusion imaging algorithm for T/R-R radar of space targets[J]. Systems Engineering and Electronics, 2024, 46(9): 3019-3030.
1 | KLINKRAD H . Space debris: model and risk analysis[M]. Berlin: Springer, 2006. |
2 |
SCHAUB H , JASPER L E Z , ANDERSON P V , et al. Cost and risk assessment for spacecraft operation decisions caused by the space debris environment modeling[J]. Acta Astronautica, 2015, 113, 66- 79.
doi: 10.1016/j.actaastro.2015.03.028 |
3 | LOGINOV S, YAKOVLEV M, MIKHAILOV M, et al. About Russian federation activity on space debris problem[C]//Proc. of the 5th European Conference on Space Debris, 2009. |
4 | QIAN J , HUANG S Y , WANG L , et al. Super-resolution ISAR imaging for maneuvering target based on deep-learning-assisted time-frequency analysis[J]. IEEE Trans.on Geoscience and Remote Sensing, 2022, 60, 5201514. |
5 |
LYU X L , XING M D , WAN C R , et al. ISAR imaging of maneuvering targets based on the range centroid Doppler technique[J]. IEEE Trans.on Image Processing, 2010, 19 (1): 141- 153.
doi: 10.1109/TIP.2009.2032892 |
6 | 田彪, 刘洋, 呼鹏江, 等. 宽带逆合成孔径雷达高分辨成像技术综述[J]. 雷达学报, 2020, 9 (5): 765- 802. |
TIAN B , LIU Y , HU P J , et al. Review of high-resolution imaging techniques of wideband inverse synthetic aperture radar[J]. Journal of Radars, 2020, 9 (5): 765- 802. | |
7 | HE X Y , TONG N N , HU X W , et al. High-resolution ISAR imaging based on two-dimensional group sparse recovery[J]. IET Radar, Sonar & Navigation, 2018, 12 (1): 82- 86. |
8 |
MARTORELLA M , PALMER J , HOMER J , et al. On bistatic inverse synthetic aperture radar[J]. IEEE Trans.on Aerospace and Electronic Systems, 2007, 43 (3): 1125- 1134.
doi: 10.1109/TAES.2007.4383602 |
9 | ZHU H S , GUO B F , HU W H , et al. Bi-ISAR sparse aperture self-focusing algorithm based on the joint constraint of compressed sensing and minimum Tsallias entropy[J]. Journal of Applied Remote Sensing, 2022, 16 (3): 036504. |
10 |
ZHU H S , HU W H , GUO B F , et al. Research on Bi-ISAR sparse aperture high resolution imaging algorithm under low SNR[J]. Electronics, 2022, 11 (18): 2856.
doi: 10.3390/electronics11182856 |
11 |
陈文峰, 李少东, 杨军, 等. 低信噪比下二维联合快速超分辨B-ISAR成像方法[J]. 电子学报, 2018, 46 (4): 840- 848.
doi: 10.3969/j.issn.0372-2112.2018.04.011 |
CHEN W F , LI S D , YANG J , et al. A fast two dimensional joint super-resolution B-ISAR imaging algorithm under low SNR[J]. Acta Electronica Sinica, 2018, 46 (4): 840- 848.
doi: 10.3969/j.issn.0372-2112.2018.04.011 |
|
12 | ZHU H S , HU W H , GUO B F , et al. Bistatic ISAR sparse aperture maneuvering target translational compensation imaging algorithm[J]. Radio Engineering, 2022, 31 (3): 262- 273. |
13 |
CATALDO D , MARTORELLA M . Bistatic ISAR distortion mitigation via super-resolution[J]. IEEE Trans.on Aerospace and Electronic Systems, 2018, 54 (5): 2143- 2157.
doi: 10.1109/TAES.2018.2808079 |
14 |
DONOHO D . Compressed sensing[J]. IEEE Trans.on Information Theory, 2006, 52 (4): 1289- 1306.
doi: 10.1109/TIT.2006.871582 |
15 | ZHU X X , SHI L , GUO B F , et al. Bi-ISAR sparse imaging algorithm with complex Gaussian scale mixture prior[J]. IET Radar, Sonar & Navigation, 2019, 13 (12): 2202- 2211. |
16 | 薛东方, 朱晓秀, 胡文华, 等. 基于加权L1范数优化的双基地ISAR稀疏成像算法[J]. 系统工程与电子技术, 2021, 43 (4): 944- 953. |
XUE D F , ZHU X X , HU W H , et al. Bi-ISAR imaging based on weighted L1 norm optimization algorithm[J]. Systems Engineering and Electronics, 2021, 43 (4): 944- 953. | |
17 | ZHU X X , LIU L M , HU W H , et al. Multi-band inverse synthetic aperture radar fusion imaging based on multiple measurement vector model[J]. Journal of Applied Remote Sensing, 2022, 16 (2): 026512. |
18 | ZHU X X , ZHANG L X , GUO B F , et al. Inverse synthetic aperture radar autofocus imaging of block structure targets with sparse aperture[J]. Journal of Applied Remote Sensing, 2023, 17 (1): 016512. |
19 |
SHAO S , ZHANG L , WEI J Q , et al. Two-dimension joint super-resolution ISAR imaging with joint motion compensation and azimuth scaling[J]. IEEE Geoscience and Remote Sensing Letters, 2021, 18 (8): 1411- 1415.
doi: 10.1109/LGRS.2020.3003578 |
20 | WEI S J , LIANG J D , WANG M , et al. AF-AMPNet: a deep learning approach for sparse aperture ISAR imaging and autofocusing[J]. IEEE Trans.on Geoscience and Remote Sensing, 2022, 66, 5206514. |
21 | 蒲涛, 童宁宁, 冯为可, 等. 基于块稀疏矩阵恢复的MIMO雷达扩展目标高分辨成像算法[J]. 系统工程与电子技术, 2021, 43 (3): 647- 655. |
PU T , TONG N N , FENG W K , et al. Extended target high resolution imaging algorithm for MIMO radar based on block sparse matrix recovery[J]. Systems Engineering and Electronics, 2021, 43 (3): 647- 655. | |
22 | HU X W , TONG N N , ZHANG Y S , et al. MIMO radar imaging with nonorthogonal waveforms based on joint-block sparse recovery[J]. IEEE Trans.on Geoscience and Remote Sensing, 2018, 56 (10): 5985- 5996. |
23 | 张磊. 高分辨SAR/ISAR成像及误差补偿技术研究[D]. 西安: 西安电子科技大学, 2012. |
ZHANG L. Study on high resolution SAR /ISAR imaging and error correction[D]. Xi'an: Xidian University, 2012. | |
24 |
XU G , XING M D , XIA X G , et al. High-resolution inverse synthetic aperture radar imaging and scaling with sparse aperture[J]. IEEE Journal of Selected Topics in Applied Earch Observations and Remote Sensing, 2015, 8 (8): 4010- 4027.
doi: 10.1109/JSTARS.2015.2439266 |
25 |
徐刚, 张磊, 陈倩倩, 等. 基于稀疏约束最优化的ISAR相位自聚焦成像算法[J]. 电子学报, 2013, 41 (9): 1772- 1777.
doi: 10.3969/j.issn.0372-2112.2013.09.016 |
XU G , ZHANG L , CHEN Q Q , et al. Navel autofocusing algorithm for ISAR imaging based on sparse constraint[J]. Acta Electronica Sinica, 2013, 41 (9): 1772- 1777.
doi: 10.3969/j.issn.0372-2112.2013.09.016 |
|
26 |
ZHANG S H , LIU Y X , LI X . Autofocusing for sparse aperture ISAR imaging based on joint constraint of sparsity and minimum entropy[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 10 (3): 998- 1011.
doi: 10.1109/JSTARS.2016.2598880 |
27 |
ZHANG S H , LIU Y X , LI X , et al. Bayesian high resolution range profile reconstruction of high-speed moving target from under-sampled data[J]. IEEE Trans.on Image Processing, 2020, 29, 5110- 5120.
doi: 10.1109/TIP.2020.2980149 |
28 |
BABACAN S D , MOLINA R , KATSAGGELOS A K . Baye-sian compressive sensing using Laplace priors[J]. IEEE Trans.on Image Processing, 2010, 19 (1): 53- 63.
doi: 10.1109/TIP.2009.2032894 |
29 | 朱晓秀, 胡文华, 马俊涛, 等. 双基地角时变下的稀疏孔径ISAR自聚焦成像[J]. 航空学报, 2018, 39 (8): 322059. |
ZHU X X , HU W H , MA J T , et al. ISAR autofocusing imaging with sparse apertures and time-varying bistatic angle[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39 (8): 322059. |
[1] | Zhengwei LIU, Ying CHEN, Yaobing LU. A study on high resolution radar tracking method for space target [J]. Systems Engineering and Electronics, 2024, 46(2): 488-496. |
[2] | Hongliang ZHAO, Yuanwen ZHANG, Leping YANG, Huan HUANG, Tian MA. Method and application analysis of remote magnetic controlling for space target [J]. Systems Engineering and Electronics, 2024, 46(1): 261-270. |
[3] | Kexin ZHAO, Qingbo GAN, Zhitao YANG, Jing LIU. Multiple-roots problem of initial orbit determination of near-Earth object and space target [J]. Systems Engineering and Electronics, 2022, 44(9): 2914-2921. |
[4] | Tao JIN, Di ZHU, Jieying HE, Wenyu WANG. Study on the characteristics of high terahertz band atmospheric background radiation observed from satellites [J]. Systems Engineering and Electronics, 2022, 44(10): 3003-3011. |
[5] | ZHAO Huipeng, WANG Junling, GAO Meiguo, GUO Baofeng, MA Shaochuang. Bistatic ISAR envelope alignment algorithm based on orbit error search [J]. Systems Engineering and Electronics, 2017, 39(6): 1235-1243. |
[6] | YU Xiang, ZHU Daiyin, LI Junqiang, YUN Tao, HUANG Xiangfei. Range alignment algorithm based on the range migration trajectory for the space target ISAR [J]. Systems Engineering and Electronics, 2017, 39(4): 775-781. |
[7] | GUO Baofeng1,2, SHANG Chao-xuan1, WANG Jun-ling2, GAO Mei-guo2. Bistatic ISAR echo simulation of space target based on twobody model [J]. Systems Engineering and Electronics, 2016, 38(8): 1771-1779. |
[8] | ZHU Jiang, LIAO Gui-sheng, ZHU Sheng-qi. High precision range compression based on FrFT for space target imaging [J]. Systems Engineering and Electronics, 2015, 37(2): 271-277. |
[9] | ZHANG Jian, XI Xiao-liang, ZHOU Xiao-dong. Space target detection in star image based on motion information [J]. Systems Engineering and Electronics, 2014, 36(5): 838-845. |
[10] | DENG Xiao-bo,SHI Chang-hai,GAO Chao,YANG Jian. Subspace signal detection in compound Gaussian clutter [J]. Systems Engineering and Electronics, 2013, 35(9): 1836-1840. |
[11] | JIANG Wei-dong, CAO Min, NIE Lei, FU Yao-wen. Study on dynamic electromagnetic data simulation of space targets [J]. Journal of Systems Engineering and Electronics, 2009, 31(9): 2042-2045. |
[12] | YE You-shi, TANG Lin-bo, ZHAO Bao-jun, CAI Xiao-fang. Realtime deep space target track system based on SOPC [J]. Journal of Systems Engineering and Electronics, 2009, 31(12): 3002-3006. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||