Systems Engineering and Electronics ›› 2025, Vol. 47 ›› Issue (11): 3559-3567.doi: 10.12305/j.issn.1001-506X.2025.11.05
• Electronic Technology • Previous Articles
Jie JIANG(
), Wenjun YAN, Qing LING, Limin ZHANG
Received:2025-03-14
Accepted:2025-07-24
Online:2025-11-25
Published:2025-12-08
Contact:
Wenjun YAN
E-mail:81348541@qq.com
CLC Number:
Jie JIANG, Wenjun YAN, Qing LING, Limin ZHANG. Tiny objects detection method for unmanned aerial vehicle ship images based on STOD[J]. Systems Engineering and Electronics, 2025, 47(11): 3559-3567.
Table 2
Ablation experimental results"
| 模块 | AP/% | 参数量 (×106) | 运算量/ GFLOPs | 时延/ ms | FPS |
| 基线模型 | 47.4 | 50.63 | 110.75 | 12.9 | 55.4 |
| 增加无锚框 | 47.1(−0.3) | 48.54 | 108.47 | 12.1 | 56.3 |
| 改进网络结构 | 47.5(+0.4) | 46.32 | 104.51 | 11.2 | 58.7 |
| +全局注意力模块 | 48.0(+0.5) | 48.42 | 106.87 | 12.2 | 56.1 |
| +CSPPAN | 48.7(+0.7) | 52.31 | 110.07 | 13.1 | 55.3 |
| ET-head | 49.6(+0.9) | 53.68 | 114.78 | 14.1 | 53.3 |
| +基于向量DFL | 50.1(+0.5) | 55.58 | 115.77 | 15.3 | 52.2 |
Table 4
Performance comparison of different algorithms %"
| 算法名称 | AP | AP50 | AP75 | APT | APS | APM |
| 扩展FPN | 29.13 | 54.07 | 27.38 | 29.64 | 32.98 | 77.13 |
| 大核卷积与层次特征融合 | 28.55 | 56.63 | 26.68 | 29.68 | 33.15 | 74.51 |
| 多尺度特征提取与跨阶段 特征融合网络 | 27.33 | 49.56 | 26.55 | 32.13 | 36.84 | 78.01 |
| 密集卷积注意力网络 | 26.46 | 48.34 | 25.38 | 31.45 | 35.71 | 76.49 |
| 多重注意力轻量化网络 | 26.35 | 47.98 | 25.45 | 32.09 | 36.78 | 76.17 |
| YOLOX | 31.28 | 60.39 | 29.61 | 32.15 | 37.14 | 77.84 |
| YOLOv8-p2 | 33.52 | 62.41 | 32.16 | 32.44 | 37.79 | 78.11 |
| YOLOv9 | 33.64 | 62.56 | 32.45 | 32.49 | 37.83 | 78.31 |
| YOLOv10 | 33.84 | 62.78 | 32.31 | 32.61 | 38.02 | 78.40 |
| 本文算法 | 34.61 | 63.25 | 32.54 | 32.72 | 38.16 | 78.47 |
| 1 |
ZHANG H, CAO C H, XU L W, et al. A UAV detection algorithm based on an artificial neural network[J]. IEEE Access, 2018, 6, 24720- 24728.
doi: 10.1109/ACCESS.2018.2831911 |
| 2 |
REKAVANDI A M, RASHIDI S, BOUSSAID F, et al. Transformers in small object detection: a benchmark and survey of state-of-the-art[J]. IEEE Trans. on Image Processing, 2021, 30, 5017- 5031.
doi: 10.1109/TIP.2021.3077139 |
| 3 | HASSAN S A, RAHIM T, SHIN S Y. Real-time UAV detection based on deep learning network[C]//Proc. of the International Conference on Information and Communication Technology Convergence, 2019. |
| 4 |
OPROMALLA R, FASANO G, ACCARDO D. A vision-based approach to UAV detection and tracking in cooperative applications[J]. Sensors, 2018, 18 (10): 3391.
doi: 10.3390/s18103391 |
| 5 |
KOU R, WANG C P, PENG Z M, et al. Infrared small target segmentation networks: a survey[J]. Pattern Recognition, 2023, 143, 109788.
doi: 10.1016/j.patcog.2023.109788 |
| 6 | BAI X Z, CHEN Z G, ZHANG Y, et al. Infrared ship target segmentation based on spatial information improved FCM[J]. IEEE Trans. on Cybernetics, 2015, 46 (12): 3259- 3271. |
| 7 |
LIU Z Y, ZHOU F G, CHEN X W, et al. Iterative infrared ship target segmentation based on multiple features[J]. Pattern Recognition, 2014, 47 (9): 2839- 2852.
doi: 10.1016/j.patcog.2014.03.005 |
| 8 |
BAI X Z, LIU M M, WANG T, et al. Feature based fuzzy inference system for segmentation of low-contrast infrared ship images[J]. Applied Soft Computing, 2016, 46, 128- 142.
doi: 10.1016/j.asoc.2016.05.004 |
| 9 |
SONG Z Z, YANG J W, ZHANG D F, et al. Semi-supervised dim and small infrared ship detection network based on haar wavelet[J]. IEEE Access, 2021, 9, 29686- 29695.
doi: 10.1109/ACCESS.2021.3058526 |
| 10 |
REN Y M, YANG J, GUO Z Q, et al. Ship classification based on attention mechanism and multi-scale convolutional neural network for visible and infrared images[J]. Electronics, 2020, 9 (12): 2022.
doi: 10.3390/electronics9122022 |
| 11 |
HAN J H, MA Y, ZHOU B, et al. On human visual system[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11 (12): 2168- 2172.
doi: 10.1109/LGRS.2014.2323236 |
| 12 | WANG K Y, DU S Y, LIU C X, et al. Interior attention-aware network for infrared small target detection[J]. IEEE Trans. on Geoscience and Remote Sensing, 2022, 60: 5002013. |
| 13 | ZHANG M J, ZHANG R, YANG Y X, et al. ISNet: shape matters for infrared small target detection[C]//Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022: 877−886. |
| 14 | ZHAO B, WANG C P, FU Q, et al. A novel pattern for infrared small target detection with generative adversarial network[J]. IEEE Trans. on Geoscience and Remote Sensing, 2020, 59 (5): 4481- 4492. |
| 15 | HOU Q Y, WANG Z P, TAN F J, et al. RISTDNet: robust infrared small target detection network[J]. IEEE Geoscience and Remote Sensing Letters, 2021, 19, 7000805. |
| 16 |
DAI Y Y, WU Y Q, ZHOU F, et al. Attentional local contrast networks for infrared small target detection[J]. IEEE Trans. on Geoscience and Remote Sensing, 2021, 59 (11): 9813- 9824.
doi: 10.1109/TGRS.2020.3044958 |
| 17 | THECKEDATH D, SEDAMKAR R R. Detecting affect states using VGG16, ResNet50 and SE-ResNet50 networks[J]. SN Computer Science, 2020, 1: 79. |
| 18 | WANG C Y, LIAO H, WU Y H, et al. CSPNet: a new backbone that can enhance learning capability of CNN[C]//Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. 2020: 390−391. |
| 19 | XU W J, LONG C J, WANG R S, et al. DRB-GAN: a dynamic resblock generative adversarial network for artistic style transfer[C]//Proc. of the IEEE/CVF International Conference on Computer Vision, 2021: 6383−6392. |
| 20 | XU G Y, XU Y, ZHANG S C, et al. SFRNet: feature extraction-fusion steganalysis network based on squeeze-and-excitation block and RepVgg block[J]. Security and Communication Networks, 2021, 1, 3676720. |
| 21 | YANG J F, FU X Y, HU Y W, et al. PanNet: a deep network architecture for pan-sharpening[C]//Proc. of the IEEE International Conference on Computer Vision, 2017: 5449−5457. |
| 22 | VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[EB/OL]. [2025-02-04]. https: //arxiv.org/abs/1706.03762. |
| 23 | GONG Y Q, YU X H, DING Y, et al. Effective fusion factor in FPN for tiny object detection[C]//Proc. of the IEEE/CVF Winter Conference on Applications of Computer Vision, 2021: 1160−1168. |
| 24 | FENG C, ZHONG Y, GAO Y, et al. Tood: task-aligned one-stage object detection[C]//Proc. of the IEEE/CVF International Conference on Computer Vision, 2021: 3490−3499. |
| 25 | 姜杰, 张立民, 刘凯, 等. 基于改进PP-YOLOE和ByteTrack算法的红外船舶目标检测跟踪方法[J]. 兵器装备工程学报, 2024, 45 (11): 291- 297. |
| JIANG J, ZHANG L M, LIU K, et al. Infrared ship target detection and tracking method based on improved PP-YOLOE and Bytetrack algorithms[J]. Journal of Weapon Equipment Engineering, 2024, 45 (11): 291- 297. | |
| 26 | 姜杰, 凌青, 闫文君, 等. 基于MFFDet-R的多源舰船图像融合检测方法[J]. 系统工程与电子技术, 2025, 47 (2): 390- 397. |
| JIANG J, LING Q, YAN W J, et al. Multi source ship image fusion detection method based on MFFDet-R[J]. Systems Engineering and Electronics, 2025, 47 (2): 390- 397. | |
| 27 | MALHOTRA R, SHAKYA A, RANJAN R, et al. Software defect prediction using binary particle swarm optimization with binary cross entropy as the fitness function[J] Journal of Physics: Conference Series, 2021, 1767(1): 012003. |
| 28 |
YANG X, YANG X J, YANG J R, et al. Learning high-precision bounding box for rotated object detection via kullback-leibler divergence[J]. Advances in Neural Information Processing Systems, 2021,
doi: 10.48550/arXiv.2160.01883 |
| 29 | LI X, WANG W H, WU L J, et al. Generalized focal loss: learning qualified and distributed bounding boxes for dense object detection[J]. Advances in Neural Information Processing Systems, 2020, 33, 21002- 21012. |
| 30 | FU A M, ZHANG X L, ZHONG N X, et al. VFL: a verifiable federated learning with privacy-preserving for big data in industrial IoT[J]. IEEE Trans. on Industrial Informatics, 2020, 18 (5): 3316- 3326. |
| 31 | 姜杰, 张立民, 刘凯, 等. 基于任务对齐学习的红外船舶目标检测方法[J]. 系统工程与电子技术, 2025, 47 (1): 34- 40. |
| JIANG J, ZHANG L M, LIU K, et al. Infrared ship target detection method based on task alignment learning[J]. Systems Engineering and Electronics, 2025, 47 (1): 34- 40. |
| [1] | Kaiming LI, Yuanpeng ZHANG, Ying LUO, Xiaonan DAI. Research progress on radar target recognition of ballistic missile [J]. Systems Engineering and Electronics, 2025, 47(9): 2870-2889. |
| [2] | Xiaolong WEI, Yarong WU, Dengkai YAO, Guhao ZHAO. Hierarchical decision-making algorithm for UAV air combat maneuvering based on deep reinforcement learning [J]. Systems Engineering and Electronics, 2025, 47(9): 2993-3003. |
| [3] | Dapeng YANG, Zihao GONG, Xiaoye WANG, Zhengyu GUO, Delin LUO. Research on UAV cooperative interception maneuver decision-making based on multi-agent reinforcement learning [J]. Systems Engineering and Electronics, 2025, 47(9): 3076-3085. |
| [4] | Ce JI, Xiangyu MA, Xiaoyu MU, Jiayi ZHAO. TS-GRU-VTA: vehicle channel estimation scheme based on deep learning [J]. Systems Engineering and Electronics, 2025, 47(9): 3093-3098. |
| [5] | Zhao YANG, Jinbiao HU, Yan WANG, Hongbiao QI. UAV coverage path planning for mountain patrol considering different takeoff and landing nests [J]. Systems Engineering and Electronics, 2025, 47(8): 2622-2631. |
| [6] | Xiaowei YAN, Chong LING, Shengbin SHI. Design and implementation of a rapid detection system for surface unexploded submunitions [J]. Systems Engineering and Electronics, 2025, 47(8): 2639-2645. |
| [7] | Xiaowei FU, Xinyi WANG, Zhe QIAO. Attack-defense confrontation strategy of multi-UAV based on APIQ algorithm [J]. Systems Engineering and Electronics, 2025, 47(7): 2205-2215. |
| [8] | Siying LIN, Feng YU, Zhi XIONG, Fang WU, Zijun ZHOU. Low-cost UAV navigation method based on AHRS for GNSS intermittent denial [J]. Systems Engineering and Electronics, 2025, 47(7): 2329-2338. |
| [9] | Junchao TANG, Chunhe HU. Complete coverage path planning for UAVs in 3D terrain and wind field environment [J]. Systems Engineering and Electronics, 2025, 47(7): 2349-2356. |
| [10] | Yunfeng HE, Xianjun SHI, Jianhua LU, Chaolun ZHAO, Guorong ZHAO. Multi-UAV grouping formation control based on synchronous DMPC under fault conditions [J]. Systems Engineering and Electronics, 2025, 47(7): 2357-2370. |
| [11] | Wanying ZHANG, Youbing GAO, Zeyi LI, Pengfei LI, Wei ZHANG. Background signal suppression algorithm based on dual-path feature fusion net [J]. Systems Engineering and Electronics, 2025, 47(7): 2406-2413. |
| [12] | Xinzheng ZHANG, Mengke YAN, Xiaolin ZHU. Noise pseudo-label tolerant semi-supervised SAR target recognition [J]. Systems Engineering and Electronics, 2025, 47(6): 1796-1805. |
| [13] | Xiaowei FU, Xinyi WANG, Zhe QIAO. Confront strategy of multi-unmanned aerial vehicle based on ASDDPG algorithm [J]. Systems Engineering and Electronics, 2025, 47(6): 1867-1879. |
| [14] | Zhijie JIANG, Heng SONG, Nan HU, Lanxi DUAN, Ping CAO. Target recognition and classification algorithm of MMW radar in tunnel [J]. Systems Engineering and Electronics, 2025, 47(5): 1453-1460. |
| [15] | Ruijing CUI, Jianbin SUN, GKewei YAN, Minghao LI. Construction method of equipment operational test indicator system based on UAF [J]. Systems Engineering and Electronics, 2025, 47(5): 1536-1550. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||