Systems Engineering and Electronics ›› 2025, Vol. 47 ›› Issue (1): 217-229.doi: 10.12305/j.issn.1001-506X.2025.01.23
• Systems Engineering • Previous Articles Next Articles
Tao HU1, Haobang LIU1,*, Tong CHEN1, Yujiang WANG1,2, Minggui LI1,3, Kai DU4
Received:
2023-12-04
Online:
2025-01-21
Published:
2025-01-25
Contact:
Haobang LIU
CLC Number:
Tao HU, Haobang LIU, Tong CHEN, Yujiang WANG, Minggui LI, Kai DU. Evaluation of ship power system resilience based on two-dimensional cloud model of IAHP-CRITIC[J]. Systems Engineering and Electronics, 2025, 47(1): 217-229.
Table 2
Evaluation index weight of ship power system defense capability"
1级指标 | 权重 | 2级指标 | 权重 | ||||
IAHP法主观权重 | CRITIC法客观权重 | 改进博弈论组合权重 | IAHP法主观权重 | CRITIC法客观权重 | 改进博弈论组合权重 | ||
T1 | 0.266 | 0.237 | 0.252 | T11 | 0.104 | 0.093 | 0.098 |
T12 | 0.077 | 0.071 | 0.073 | ||||
T13 | 0.085 | 0.073 | 0.081 | ||||
T2 | 0.187 | 0.213 | 0.202 | T21 | 0.066 | 0.075 | 0.071 |
T22 | 0.083 | 0.091 | 0.087 | ||||
T23 | 0.038 | 0.047 | 0.044 | ||||
T3 | 0.337 | 0.305 | 0.322 | T31 | 0.092 | 0.086 | 0.090 |
T32 | 0.076 | 0.067 | 0.071 | ||||
T33 | 0.073 | 0.063 | 0.069 | ||||
T34 | 0.096 | 0.089 | 0.092 | ||||
T4 | 0.210 | 0.245 | 0.224 | T41 | 0.088 | 0.102 | 0.093 |
T42 | 0.052 | 0.065 | 0.056 | ||||
T42 | 0.070 | 0.078 | 0.075 |
Table 3
Evaluation index weight of ship power system recovery capability"
1级指标 | 权重 | 2级指标 | 权重 | ||||
IAHP法主观权重 | CRITIC法客观权重 | 改进博弈论组合权重 | IAHP法主观权重 | CRITIC法客观权重 | 改进博弈论组合权重 | ||
T1 | 0.307 | 0.286 | 0.295 | T11 | 0.115 | 0.109 | 0.112 |
T12 | 0.091 | 0.083 | 0.085 | ||||
T13 | 0.101 | 0.094 | 0.098 | ||||
T2 | 0.152 | 0.168 | 0.161 | T21 | 0.053 | 0.059 | 0.057 |
T22 | 0.068 | 0.074 | 0.071 | ||||
T23 | 0.031 | 0.035 | 0.033 | ||||
T3 | 0.353 | 0.365 | 0.359 | T31 | 0.098 | 0.112 | 0.106 |
T32 | 0.079 | 0.093 | 0.085 | ||||
T33 | 0.076 | 0.068 | 0.072 | ||||
T34 | 0.100 | 0.092 | 0.096 | ||||
T4 | 0.188 | 0.181 | 0.185 | T41 | 0.078 | 0.084 | 0.081 |
T42 | 0.043 | 0.038 | 0.040 | ||||
T42 | 0.067 | 0.059 | 0.064 |
Table 4
Standard cloud digital characteristics of evaluation of ship power system resilience"
舰船电力系统韧性标准等级 | 舰船电力系统韧性水平描述 | 舰船电力系统防御能力 | 舰船电力系统恢复能力 | 标准云的数字特征(Ex0, En0, He0) |
I | 韧性极弱 | 防御能力极弱 | 恢复能力极弱 | (0, 1.030, 0.261 8) |
II | 韧性弱 | 防御能力弱 | 恢复能力弱 | (3.09, 0.6367, 0.161 8) |
III | 韧性极中 | 防御能力中 | 恢复能力中 | (5, 0.393 5, 0.1) |
IV | 韧性强 | 防御能力强 | 恢复能力强 | (6.91, 0.63 67, 0.161 8) |
V | 韧性极强 | 防御能力极强 | 恢复能力极强 | (10, 1.030, 0.261 8) |
Table 5
Cloud digital characteristics of evaluation of ship power system resilience"
舰船电力系统韧性综合评价云 | 舰船电力系统韧性一级指标评价云 | 舰船电力系统韧性二级指标评价云 | ||||||||||||
目标 | 舰船电力系统防御能力 | 舰船电力系统恢复能力 | 指标 | 权重 | 舰船电力系统防御能力 | 权重 | 舰船电力系统恢复能力 | 指标 | 权重 | 舰船电力系统防御能力 | 权重 | 舰船电力系统恢复能力 | ||
T | (7.757, 0.606, 0.211) | (7.658, 0.593, 0.214) | T1 | 0.252 | (8.350, 0.642, 0.193) | 0.295 | (7.874, 0.516, 0.204) | T11 | 0.098 | (8.334, 0.582, 0.198) | 0.112 | (7.152, 0.447, 0.207) | ||
T12 | 0.073 | (7.946, 0.663, 0.165) | 0.085 | (8.423, 0.551, 0.223) | ||||||||||
T13 | 0.081 | (8.734, 0.696, 0.211) | 0.098 | (8.223, 0.566, 0.183) | ||||||||||
T2 | 0.202 | (7.446, 0.607, 0.199) | 0.161 | (7.484, 0.598, 0.234) | T21 | 0.071 | (7.323, 0.556, 0.175) | 0.057 | (6.823, 0.492, 0.203) | |||||
T22 | 0.087 | (7.882, 0.675, 0.223) | 0.071 | (8.322, 0.688, 0.261) | ||||||||||
T23 | 0.044 | (6.784, 0.556, 0.193) | 0.033 | (6.824, 0.587, 0.228) | ||||||||||
T3 | 0.322 | (8.703, 0.628, 0.219) | 0.359 | (8.440, 0.648, 0.238) | T31 | 0.090 | (8.331, 0.663, 0.232) | 0.106 | (7.935, 0.612, 0.243) | |||||
T32 | 0.071 | (8.856, 0.537, 0.213) | 0.085 | (9.215, 0.763, 0.257) | ||||||||||
T33 | 0.069 | (8.558, 0.653, 0.188) | 0.072 | (8.811, 0.691, 0.237) | ||||||||||
T34 | 0.092 | (9.058, 0.646, 0.234) | 0.096 | (8.033, 0.552, 0.216) | ||||||||||
T4 | 0.224 | (6.010, 0.534, 0.231) | 0.185 | (5.948, 0.604, 0.169) | T41 | 0.093 | (6.273, 0.497, 0.208) | 0.081 | (5.511, 0.533, 0.173) | |||||
T42 | 0.056 | (5.882, 0.479, 0.266) | 0.040 | (6.103, 0.688, 0.177) | ||||||||||
T43 | 0.075 | (5.778, 0.622, 0.234) | 0.064 | (6.405, 0.642, 0.158) |
1 | 黄海静,高阳,孙英涛,等.电力系统安全韧性评价标准化研究[J].标准科学,2022,12(1):98-101. |
HUANGH J,GAOY,SUNY T,et al.Research on standardi-zation of safety toughness evaluation of power system[J].Standard Science,2022,12(1):98-101. | |
2 | CHIVUNGAJ N,LINZ Y,BLANCHARDR.Power systems'resilience: a comprehensive literature review[J].Energies,2023,16(5):45-57. |
3 | YOUNESIA,SHAYEGHIH,WANGZ J,et al.Trends in modern power systems resilience: state-of-the-art review[J].Renewable and Sustainable Energy Reviews,2022,12(2):76-91. |
4 | UMUNNAKWEA,HUANGH,OIKONOMOUK,et al.Quantitative analysis of power systems resilience: standardization, categorizations, and challenges[J].Renewable and Sustainable Energy Reviews,2021,14(7):112-128. |
5 | SHENL J,TANGY L,TANGL C.Understanding key factors affecting power systems resilience[J].Reliability Engineering System Safety,2021,3(2):107-124. |
6 |
AFZALS,MOKHLISH,ILLIASH A,et al.State-of-the-art review on power system resilience and assessment techniques[J].IET Generation, Transmission Distribution,2020,14(25):6107-6121.
doi: 10.1049/iet-gtd.2020.0531 |
7 | 田甜,张骏,叶樊,等.洪涝灾害下配电网三维韧性指标评估体系[J].电工电能新技术,2022,41(7):80-88. |
TIANT,ZHANGJ,YEF,et al.Evaluation system of 3D toughness index of distribution network under flood disaster[J].New Technology of Electro engineering and Electric Energy,2022,41(7):80-88. | |
8 | SABOUHIH,DOROUDIA,FOTUHIF M,et al.Electrical power system resilience assessment: a comprehensive approach[J].IEEE Systems Journal,2019,13(5):111-126. |
9 |
PANTELIM,TRAKASD N,MANCARELLAP,et al.Power systems resilience assessment: hardening and smart operational enhancement strategies[J].Proceedings of the IEEE,2017,105(7):1202-1213.
doi: 10.1109/JPROC.2017.2691357 |
10 | SEBASTIANE,MATHAIOSP,PIERLUIGIM,et al.Multi-phase assessment and adaptation of power systems resilience to natural hazards[J].Electric Power Systems Research,2016,13(6):352-361. |
11 | 张鑫,王楠,王伟,等.考虑台风天气的电力系统韧性评估[J].电力系统及其自动化学报,2019,31(8):21-26. |
ZHANGX,WANGN,WANGW,et al.Toughness evaluation of power system considering typhoon weather[J].Journal of Electric Power Systems and Automation,2019,31(8):21-26. | |
12 | ZHANGH,BIEZ H,LIG F,et al.Assessment method and metrics of power system resilience after disasters[J].The Journal of Engineering,2019,19(16):880-883. |
13 | 孙为民,孙华东,何剑,等.面向严重自然灾害的电力系统韧性评估技术综述[J].电网技术,2024,48(1):129-139. |
SUNW M,SUNH D,HEJ,et al.Review of power system resilience assessment techniques for severe natural disasters[J].Power Grid Technology,2024,48(1):129-139. | |
14 | WANGC,JUP,WUF,et al.A systematic review on power system resilience from the perspective of generation, network, and load[J].Renewable and Sustainable Energy Reviews,2022,16(7):96-108. |
15 | DENGX,GENGF T,YANGJ X.A novel portfolio based on interval-valued intuitionistic fuzzy AHP with improved combination weight method and new score function[J].Engineering Letters,2023,31(4):66-78. |
16 | ZENGW H,FANJ Y,RENZ C,et al.Economic evaluation method of modern power transmission system based on improved technique for order of preference by similarity to ideal solution (TOPSIS) and best-worst method-anti-entropy weight[J].Energies,2023,16(21):145-158. |
17 | ZHANGQ J,LIUC J,GUOS,et al.Evaluation of the rock burst intensity of a cloud model based on the CRITIC method and the order relation analysis method[J].Mining, Metallurgy Exploration,2023,40(5):1849-1863. |
18 | 南东亮,王维庆,张陵,等.基于关联规则挖掘与组合赋权-云模型的电网二次设备运行状态风险评估[J].电力系统保护与控制,2021,49(10):67-76. |
NAND L,WANGW Q,ZHANGL,et al.Operational state risk assessment of power grid secondary equipment based on association rule mining and combination empowerment cloud model[J].Power System Protection and Control,2021,49(10):67-76. | |
19 | 周依希,李晓明,瞿合祚.基于反熵-AHP二次规划组合赋权法的电网节点综合脆弱性评估[J].电力自动化设备,2019,39(7):133-140. |
ZHOUY X,LIX M,QUH Z.Comprehensive vulnerability assessment of power grid nodes based on inverse entropy-AHP quadratic programming combination weighting method[J].Electric Power Automation Equipment,2019,39(7):133-140. | |
20 | 翟芸,胡冰,施端阳.基于区间层次分析法和Vague集的雷达装备可靠性评估[J].探测与控制学报,2023,45(3):81-88. |
ZHAIY,HUB,SHID Y.Reliability evaluation of radar equipment based on interval analytic hierarchy process and Vague set[J].Journal of Detection and Control,2019,45(3):81-88. | |
21 | 李敬强,樊天辰,周妍汝,等.基于云模型的民航监察员队伍能力综合评价[J].北京航空航天大学学报,2022,48(12):2425-2433. |
LIJ Q,FANT C,ZHOUY R,et al.Comprehensive evaluation of civil aviation inspector team capability based on cloud model[J].Journal of Beijing University of Aeronautics and Astronautics,2022,48(12):2425-2433. | |
22 | 崔宇朋,余杨,韦明秀,等.改进博弈论四重组合赋权法下的开口甲板多目标拓扑优化设计[J].机械工程学报,2023,59(9):263-273. |
CUIY P,YUY,WEIM X,et al.Multi-objective topology optimization design of open deck based on improved game theory quadruple weighting method[J].Chinese Journal of Mecha-nical Engineering,2019,59(9):263-273. | |
23 | 王宇江,狄鹏,侯丙旭,等.基于FAHP-CM的舰船电力系统韧性评价研究[J].现代防御技术,2024,52(5):138-146. |
WANGY J,DIP,HOUB X,et al.Study on toughness evaluation of ship power system based on FAHP-CM[J].Modern Defense Technology,2024,52(5):138-146. | |
24 | 陈磊,邓欣怡,陈红坤,等.电力系统韧性评估与提升研究综述[J].电力系统保护与控制,2022,50(13):11-22. |
CHENL,DENGX Y,CHENH K,et al.Review on toughness evaluation and improvement of power systems[J].Power Systems Protection and Control,2022,50(13):11-22. | |
25 | 谢斌, 刘岩, 崔利兵. 基于改进博弈论—二维云模型的高海拔铁路隧道施工风险预警[EB/OL]. [2023-11-04]. https://doi.org/10.1328/j.issn.1004-2954.202306120001. |
XIE B, LIU Y, CUI L B. Risk warning of high-altitude railway tunnel construction based on improved game theory two dimensional cloud model[EB/OL]. [2023-11-04]. https://doi.org/10.1328/j.issn.1004-2954.202306120001. | |
26 | 韩峰,刘志博,尹文华,等.基于二维云模型的沙漠高速公路生态风险评价及优选研究[J].安全与环境学报,2023,23(10):3774-3783. |
HANF,LIUZ B,YINW H,et al.Ecological risk assessment and optimization of desert expressway based on two dimensional cloud model[J].Journal of Safety and Environment,2023,23(10):3774-3783. | |
27 | UMAIRS.The concept of vulnerability and resilience in electric power systems[J].Australian Journal of Electrical and Electronics Engineering,2021,18(3):138-145. |
28 | DUL H,CHENH,FANGY D.Research of ergonomic comprehensive evaluation for suit production operation based on hybrid method with IAHP and gray entropy[J].EURASIP Journal on Advances in Signal Processing,2021,21(1):210-227. |
29 | 任娟娟,刘宽,王伟华,等.基于区间层次分析的CRTS Ⅲ型板式无砟轨道开裂状况评估[J].浙江大学学报(工学版),2021,55(12):2267-2274. |
RENJ J,LIUK,WANGW H,et al.Evaluation of cracking status of CRTS Ⅲ. type slab ballastless track based on interval analytic hierarchy process[J].Journal of Zhejiang University(Engineering Science),2021,55(12):2267-2274. | |
30 | WANGY M,CHINK S.An eigenvector method for generating normalized interval and fuzzy weights[J].Applied Mathematics and Computation,2006,181(2):1257-1275. |
31 | ZHONGS H,CHENY Y,MIAOY J.Using improved CRITIC method to evaluate thermal coal suppliers[J].Scientific Reports,2023,13(1):195-195. |
32 | TIANR,WUJ H.Groundwater quality appraisal by improved set pair analysis with game theory weightage and health risk estimation of contaminants for Xuecha drinking water source in a loess area in Northwest China[J].Human and Ecological Risk Assessment: An International Journal,2019,25(1/2):132-157. |
33 | WANGL,JINR B,ZHOUJ P,et al.Construction risk assessment of yellow river bridges based on combined empowerment method and two-dimensional cloud model[J].Applied Sciences,2023,13(19):77-92. |
34 | LIUY T,YEN H,HUX L,et al.An improved fatigue da-mage model based on the virtual load spectrum of golden section method[J].Fatigue Fracture of Engineering Materials Structures,2021,44(8):2101-2118. |
35 | ZHANGL M,CHENW Y.Multi-criteria group decision-ma-king with cloud model and TOPSIS for alternative selection under uncertainty[J].Soft Computing,2022,26(22):509-529. |
[1] | Qian SU, Yuanfu ZHONG, Zhiqin CAO, Yingchao ZHANG. Target threat assessment model based on operational situation and improved CRITIC-TOPSIS [J]. Systems Engineering and Electronics, 2023, 45(8): 2343-2352. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||