Systems Engineering and Electronics ›› 2024, Vol. 46 ›› Issue (7): 2413-2423.doi: 10.12305/j.issn.1001-506X.2024.07.23
• Systems Engineering • Previous Articles
Haonan WU1, Lingsong DI2, Shoukui SI1, Bing WAN2, Xichao SU3,*
Received:
2023-02-14
Online:
2024-06-28
Published:
2024-07-02
Contact:
Xichao SU
CLC Number:
Haonan WU, Lingsong DI, Shoukui SI, Bing WAN, Xichao SU. Research on prediction of maneuvering routes of anti-aircraft fire units under long-range joint strikes[J]. Systems Engineering and Electronics, 2024, 46(7): 2413-2423.
Table 1
Model related parameters"
变量 | 解释说明 |
S | 蓝方防空火力单元最大拦截面积 |
φ | 红方火箭弹来袭方向的最大夹角 |
θ | 蓝方防空火力单元有效拦截角度 |
θmax | 栅格网络节点与目标城市的方位角最大值 |
θmin | 栅格网络节点与目标城市的方位角最小值 |
A | 蓝方防空火力单元有效拦截面积 |
SN | 防空火力单元最大拦截面积内的节点数目 |
AN | 红方火箭弹可能来袭方向夹角之内的最大拦截面积内的节点数目 |
Ok | 蓝方重点城市 |
Fi | 防空火力单元 |
Bi | 基本阵地 |
Ci | 预备阵地 |
Dk | 普通城市 |
d | 蓝方防空火力单元l h机动的距离 |
γ | 蓝方防空火力单元的防御能力 |
γ总 | 蓝方5个城市目标的总防御能力 |
dij | 火力单元从普通阵地Bi转移到备用阵地Cj的最短距离 |
γik | 位于基本阵地Bi的火力单元对城市Ok的防御能力 |
γjk | 位于备用阵地Bj的火力单元对城市Ok的防御能力 |
Table 2
Optimal maneuver strategy results"
单元 | 状态 | 机动目的阵地 | 保护目标 | 防御能力值 | 到达阵地时间 | 是否能接替值班 |
F1 | 机动 | C16 | O1 | 0.74 | 58.46 | 1 |
F2 | 机动 | C21 | O2 | 0.49 | 101.63 | 1 |
F3 | 机动 | C17 | O1 | 0.68 | 80.85 | 1 |
F4 | 机动 | C18 | O1 | 0.85 | 100.48 | 1 |
F5 | 值班 | - | O5 | 0.61 | - | 0 |
F6 | 值班 | - | O1 | 0.76 | - | 0 |
F7 | 值班 | - | O2 | 0.40 | - | 0 |
F8 | 机动 | C20 | O2 | 0.50 | 54.05 | 1 |
F9 | 值班 | - | O4 | 0.67 | - | 0 |
F10 | 值班 | - | O2 | 0.20 | - | 0 |
F11 | 机动 | C28 | O3 | 0.31 | 52.00 | 1 |
F12 | 机动 | C26 | O3 | 0.39 | 112.30 | 1 |
F13 | 机动 | C36 | O4 | 0.55 | 55.01 | 1 |
F14 | 机动 | C12 | O5 | 0.56 | 94.29 | 1 |
F15 | 机动 | C6 | O1 | 0.34 | 113.25 | 1 |
15个防空火力单元对目标的防御能力之和 | 8.07 |
Table 3
Road usage of maneuver route library"
起始点 | 终点 | 标号 | 使用次数 | 使用频率/% |
B1 | B3 | 1 | 0 | 0.00 |
B10 | B11 | 2 | 511 | 3.41 |
B10 | B8 | 3 | 105 | 0.70 |
B10 | B7 | 4 | 1 074 | 7.19 |
B10 | B9 | 5 | 0 | 0.00 |
B10 | B12 | 6 | 981 | 6.55 |
B13 | B12 | 7 | 497 | 3.31 |
B14 | B13 | 8 | 3 | 0.00 |
B14 | B15 | 9 | 0 | 0.00 |
B15 | B13 | 10 | 2 | 0.00 |
B3 | B4 | 11 | 137 | 0.90 |
B3 | D2 | 12 | 954 | 6.38 |
B5 | O1 | 13 | 522 | 3.48 |
B5 | B4 | 14 | 144 | 0.97 |
B6 | B1 | 15 | 578 | 3.88 |
B6 | D1 | 16 | 1 042 | 6.95 |
B7 | B6 | 17 | 1 093 | 7.29 |
B7 | O2 | 18 | 210 | 1.40 |
B8 | B11 | 19 | 406 | 2.71 |
B8 | B5 | 20 | 570 | 3.81 |
D1 | B2 | 21 | 369 | 2.47 |
D1 | O1 | 22 | 1 563 | 10.46 |
D1 | B5 | 23 | 142 | 0.97 |
D2 | B15 | 24 | 503 | 3.38 |
D2 | B14 | 25 | 449 | 3.01 |
O1 | B1 | 26 | 269 | 1.80 |
O1 | B3 | 27 | 1 328 | 8.86 |
O1 | B2 | 28 | 138 | 0.90 |
O1 | B4 | 29 | 493 | 3.31 |
O2 | B8 | 30 | 101 | 0.67 |
O2 | D1 | 31 | 608 | 4.04 |
O2 | B9 | 32 | 177 | 1.20 |
1 |
董晨, 帅逸仙, 周金鹏, 等. 网络化多传感器-多武器协同防空任务规划[J]. 系统工程与电子技术, 2022, 44 (12): 3738- 3746.
doi: 10.12305/j.issn.1001-506X.2022.12.18 |
DONG C , SHUAI Y X , ZHOU J P , et al. Cooperative air defense task planning of networked multi-sensor-multi-weapon[J]. Systems Engineering and Electronics, 2022, 44 (12): 3738- 3746.
doi: 10.12305/j.issn.1001-506X.2022.12.18 |
|
2 |
徐浩, 邢清华, 王伟. 基于模糊多目标规划的防空反导火力分配[J]. 系统工程与电子技术, 2018, 40 (3): 563- 570.
doi: 10.3969/j.issn.1001-506X.2018.03.12 |
XU H , XING Q H , WANG W . WTA for air and missile defense based on fuzzy multi-objective programming[J]. Systems Engineering and Electronics, 2018, 40 (3): 563- 570.
doi: 10.3969/j.issn.1001-506X.2018.03.12 |
|
3 | 王龚, 赵文飞, 滕克难, 等. 不确定因素下海上要地防空动态火力分配模型[J]. 兵工学报, 2022, 43 (11): 2885- 2896. |
WANG G , ZHAO W F , TENG K N , et al. Research on the priority ranking of air defense and anti-missile positions in important place at sea[J]. Acta Armamentarii, 2022, 43 (11): 2885- 2896. | |
4 | 杜继永, 张凤鸣, 杨骥, 等. 基于模糊理论的防空系统威胁评估方法[J]. 火力与指挥控制, 2012, 37 (10): 89- 92. |
DU J Y , ZHANG F M , YANG J , et al. Assessment of air defense threat based on fuzzy theory[J]. Fire Control & Command Control, 2012, 37 (10): 89- 92. | |
5 |
WANG Y , LI J , HUANG W L , et al. Dynamic weapon target assignment based on intuitionistic fuzzy entropy of discrete particle swarm[J]. China Communications, 2017, 14 (1): 169- 179.
doi: 10.1109/CC.2017.7839767 |
6 | 付涛, 王军. 防空系统中空中目标威胁评估方法研究[J]. 指挥控制与仿真, 2016, 38 (3): 63- 69. |
FU T , WANG J . Threat assessment of aerial targets in air-defense[J]. Command Control & Simulation, 2016, 38 (3): 63- 69. | |
7 |
颜培远, 刘曙, 王君. 基于动态规划-遗传算法的防空部署优化模型[J]. 系统工程与电子技术, 2018, 40 (10): 2249- 2255.
doi: 10.3969/j.issn.1001-506X.2018.10.14 |
YAN P Y , LIU S , WANG J . Optimization model of air defense disposition based on dynamic programming and genetic algorithm[J]. Systems Engineering and Electronics, 2018, 40 (10): 2249- 2255.
doi: 10.3969/j.issn.1001-506X.2018.10.14 |
|
8 | 万佳庆, 王鹏飞, 郭强, 等. 基于烟花算法的要地防空多传感器部署规划方法[J]. 飞行力学, 2021, 39 (6): 62- 67. |
WAN J Q , WANG P F , GUO Q , et al. Multi-sensor deployment planning method for air defense in strategic point based on firework algorithm[J]. Flight Dynamics, 2021, 39 (6): 62- 67. | |
9 | LI J , XIN B , PARDALOS P M , et al. Solving bi-objective uncertain stochastic resource allocation problems by the CVaR-based risk measure and decomposition-based multi-objective evolutionary algorithms[J]. Annals of Operations Research, 2021, 296 (1/2): 639- 666. |
10 |
王龚, 赵文飞, 陈健, 等. 海上要地防空反导阵地优度排序研究[J]. 系统工程与电子技术, 2022, 44 (6): 1920- 1926.
doi: 10.12305/j.issn.1001-506X.2022.06.18 |
WANG G , ZHAO W F , CHEN J , et al. Research on priority ranking of air defense and anti-missile positions in important place at sea[J]. Systems Engineering and Electronics, 2022, 44 (6): 1920- 1926.
doi: 10.12305/j.issn.1001-506X.2022.06.18 |
|
11 | 孙海文, 谢晓方, 孙涛, 等. 改进型布谷鸟搜索算法的防空火力优化分配模型求解[J]. 兵工学报, 2019, 40 (1): 189- 197. |
SUN H W , XIE X F , SUN T , et al. Improved cuckoo search algorithm for solving antiaircraft weapon-target optimal assignment model[J]. Acta Armamentarii, 2019, 40 (1): 189- 197. | |
12 |
蔺向阳, 邢清华, 刘付显. 针对要点防空模型的作战兵力优化研究[J]. 系统工程与电子技术, 2022, 44 (3): 921- 928.
doi: 10.12305/j.issn.1001-506X.2022.03.24 |
LIN X Y , XING Q H , LIU F X . Research on combat force optimization for point air defense model[J]. Systems Engineering and Electronics, 2022, 44 (3): 921- 928.
doi: 10.12305/j.issn.1001-506X.2022.03.24 |
|
13 |
雷宇曜, 姜文志, 刘立佳, 等. 基于子目标进化算法的要地防空武器系统优化部署[J]. 系统工程与电子技术, 2016, 38 (2): 314- 322.
doi: 10.3969/j.issn.1001-506X.2016.02.12 |
LEI Y Y , JIANG W Z , LIU L J , et al. Weapon system deployment optimization based on a sub-objective evolutionary algorithm for key-point air defense[J]. Systems Engineering and Electronics, 2016, 38 (2): 314- 322.
doi: 10.3969/j.issn.1001-506X.2016.02.12 |
|
14 | 孙海文, 谢晓方, 庞威, 等. 基于改进火力分配模型的综合防空火力智能优化分配[J]. 控制与决策, 2020, 35 (5): 1102- 1112. |
SUN H W , XIE X F , PANG W , et al. Integrated air defense firepower intelligence optimal assignment based on improved firepower assignment model[J]. Control and Decision, 2020, 35 (5): 1102- 1112. | |
15 | 魏彤, 龙琛. 基于改进遗传算法的移动机器人路径规划[J]. 北京航空航天大学学报, 2020, 46 (4): 703- 711. |
WEI T , LONG C . Path planning for mobile robot based on improved genetic algorithm[J]. Journal of Beijing University of Aeronautics and Astronautic, 2020, 46 (4): 703- 711. | |
16 | 唐俊林, 张栋, 王孟阳, 等. 改进链式多种群遗传算法的防空火力任务分配[J]. 哈尔滨工业大学学报, 2022, 54 (6): 19- 27. |
TANG J L , ZHANG D , WANG M Y , et al. Air defense firepower task assignment based on improved chainlike multi-population genetic algorithm[J]. Journal of Harbin Institute of Technology, 2022, 54 (6): 19- 27. | |
17 | 张松涛, 王公宝, 赵虎. 含禁忌算子的遗传算法在水面舰艇编队防空作战目标分配中的应用[J]. 军事运筹与系统工程, 2009, 23 (2): 43- 47. |
ZHANG S T , WANG G B , ZHAO H . Application of genetic algorithm with tabu operator in antiaircraft target assignment of surface warship formation[J]. Military Operations Research and Systems Engineering, 2009, 23 (2): 43- 47. | |
18 |
李梦杰, 常雪凝, 石建迈, 等. 武器目标分配问题研究进展: 模型、算法与应用[J]. 系统工程与电子技术, 2023, 45 (4): 1049- 1071.
doi: 10.12305/j.issn.1001-506X.2023.04.14 |
LI M J , CHANG X N , SHI J M , et al. Developments of weapon target assignment problem: models, algorithms, and applications[J]. Systems Engineering and Electronics, 2023, 45 (4): 1049- 1071.
doi: 10.12305/j.issn.1001-506X.2023.04.14 |
|
19 | 张志伟, 蒋道刚, 袁坤刚. 低空突防航线规划研究[J]. 飞行力学, 2019, 37 (4): 62- 67. |
ZHANG Z W , JIANG D G , YUAN K G . Study on low altitude penetration route planning[J]. Flight Mechanics, 2019, 37 (4): 62- 67. | |
20 | OLEKSANDR M , YEVHEN R , DMYTRO K , et al. Decision-making model for task execution by a military unit in terms of queuing theory[J]. Military Operations Research, 2021, 26 (1): 59- 70. |
21 | MOHTASHAMI Z , AGHSAMI A , JOLAI F . A green closed loop supply chain design using queuing system for reducing environmental impact and energy consumption[J]. Journal of Cleaner Production, 2020, 242, 118452. |
22 | 智洪欣, 赵鹏, 李中, 等. 基于可射击概率约束的防空作战火力优化分配[J]. 兵工学报, 2022, 43 (4): 952- 959. |
ZHI H X , ZHAO P , LI Z , et al. A weapon-target assignment in air-defense operations based on shooting probability constraint[J]. Acta Armamentarii, 2022, 43 (4): 952- 959. | |
23 |
张杰, 王刚, 宋亚飞, 等. 基于自适应SGD-多智能体的防空资源部署优化[J]. 系统工程与电子技术, 2019, 41 (7): 1536- 1543.
doi: 10.3969/j.issn.1001-506X.2019.07.14 |
ZHANG J , WANG G , SONG Y F , et al. Optimization of air defense resource deployment based on adaptive SGD-multi-agent[J]. Systems Engineering and Electronics, 2019, 41 (7): 1536- 1543.
doi: 10.3969/j.issn.1001-506X.2019.07.14 |
|
24 |
朱晓雯, 范成礼, 卢盈齐, 等. 基于改进BBO算法和模糊期望效果的反导武器目标分配建模与实现[J]. 系统工程与电子技术, 2023, 45 (11): 3544- 3554.
doi: 10.12305/j.issn.1001-506X.2023.11.21 |
ZHU X W , FAN C L , LU Y Q , et al. Anti-missile weapon target allocation modeling and implementation based on improved BBO algorithm and fuzzy expected effect[J]. Systems Engineering and Electronics, 2023, 45 (11): 3544- 3554.
doi: 10.12305/j.issn.1001-506X.2023.11.21 |
|
25 | 季军亮, 汪民乐, 魏桥, 等. 多层反导协同作战有关问题及解决思路分析[J]. 飞航导弹, 2021, 4, 68-73, 79. |
JI J L , WANG M L , WEI Q , et al. Analysis of problems and solutions related to multi-layer anti-missile coordinated operation[J]. Aerodynamic Missile Journal, 2021, 4, 68-73, 79. |
[1] | Zhengyang LIU, Li ZHOU, Rui ZHANG. Attitude control of hypersonic vehicle with random parameter perturbations [J]. Systems Engineering and Electronics, 2024, 46(2): 703-714. |
[2] | Yuang ZHU, Yali ZHAO, Jialuan HE, Chenguang ZHANG, Chaojun WU, Xiaoxiao JIA. Topology discovery method for mobile communication systems based on distributed SDN [J]. Systems Engineering and Electronics, 2024, 46(1): 357-365. |
[3] | Lei WU, Ju LIU, Zhichao GAO, Zheng DONG, Hongji XU. Time delay optimization scheme of industrial internet based on time sensitive software defined network [J]. Systems Engineering and Electronics, 2023, 45(6): 1836-1846. |
[4] | Bin ZENG, Quanxian ZHANG, Houpu LI. Optimal scheduling for cooperative support chain of logistics and equipment under uncertainty [J]. Systems Engineering and Electronics, 2021, 43(5): 1277-1286. |
[5] | Liben YANG, Wenjun WEI, Jianfeng YANG, Taiguo LI, Dong WANG. Improved ADRC attitude control algorithm for tilting dual-fan vector aircraft [J]. Systems Engineering and Electronics, 2021, 43(10): 2976-2983. |
[6] | Cheng WANG, Xugang WANG. Terminal sliding mode control for hypersonic guided projectile [J]. Systems Engineering and Electronics, 2020, 42(12): 2859-2866. |
[7] | XU Hao, XING Qinghua, WANG Wei. WTA for air and missile defense based on fuzzy multi-objective programming [J]. Systems Engineering and Electronics, 2018, 40(3): 563-570. |
[8] | MENG Xiangfei, WANG Ying, QI Yao, LV Maolong, LI Chao. New method for I-UMOP problem based on PEV principle [J]. Systems Engineering and Electronics, 2018, 40(2): 338-345. |
[9] | LIU Jianghui, LI Haiyang. Augmented proportional navigation control for approach to uncontrolled tumbling satellite#br# [J]. Systems Engineering and Electronics, 2018, 40(10): 2311-2316. |
[10] | LI Jiguang, CHEN Xin, WANG Xin, ZHANG Rong. Nonlinear robust adaptive control of flying wing UAV maneuvering flight [J]. Systems Engineering and Electronics, 2017, 39(9): 2058-2067. |
[11] | SUN Huadong, YU Jianqiao, MEI Yuesong. Control of wrap-around fin rolling missiles based on#br# Lipschitz adaptive trajectory linearization [J]. Systems Engineering and Electronics, 2017, 39(1): 162-167. |
[12] | GAI Jun-feng, ZHAO Guo-rong, SONG Chao. Model predictive control based on linearization and neural network approach [J]. Systems Engineering and Electronics, 2015, 37(2): 394-399. |
[13] | WANG Qing, WANG Tong, HOU De-long, DONG Chao-yang. Robust LPV control for morphing vehicles via velocity based linearization [J]. Systems Engineering and Electronics, 2014, 36(6): 1130-1136. |
[14] | ZHENG Hao-tian, GU Xiao-dong . PCNN shortest path algorithm based on bandwidth remaining rate [J]. Journal of Systems Engineering and Electronics, 2013, 35(4): 859-863. |
[15] | LIU Xiao, LIU Zhong, HOU Wen-shu, XU Jiang-hu. Improved MOPSO algorithm for multi-objective programming model of weapon target assignment [J]. Journal of Systems Engineering and Electronics, 2013, 35(2): 326-330. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||