Systems Engineering and Electronics ›› 2024, Vol. 46 ›› Issue (6): 2164-2173.doi: 10.12305/j.issn.1001-506X.2024.06.35
• Communications and Networks • Previous Articles
Xuan WEI1, Zhihua LIU1,*, Qing LI2, Xiaoming HE1, Junya HUANG1
Received:2023-06-19
Online:2024-05-25
Published:2024-06-04
Contact:
Zhihua LIU
CLC Number:
Xuan WEI, Zhihua LIU, Qing LI, Xiaoming HE, Junya HUANG. Research on analysis and prediction of traffic matrix for large-scale IP network[J]. Systems Engineering and Electronics, 2024, 46(6): 2164-2173.
Table 1
Illustration of traffic matrix"
| 节点 | 节点 | ||||||
| N1 | N2 | N3 | … | N14 | N15 | N16 | |
| N1 | 437.32 | 28.08 | 14.98 | … | 21.01 | 6.69 | 52.06 |
| N2 | 4.49 | 60.76 | 6.86 | … | 6.12 | 6.11 | 16.32 |
| N3 | 21.62 | 27.64 | 306.76 | … | 16.01 | 48.22 | 46.34 |
| | | | | | | | |
| N14 | 17.08 | 5.69 | 17.18 | … | 805.44 | 8.75 | 256.11 |
| N15 | 7.81 | 15.78 | 86.89 | … | 10.98 | 206.89 | 23.53 |
| N16 | 51.95 | 18.81 | 57.34 | … | 323.07 | 28.82 | 2 337.57 |
Table 2
Illustration of traffic flow time series"
| 时间 | 节点 | ||||||
| N1-N1 | N1-N2 | N1-N3 | … | N16-N14 | N16-N15 | N16-N16 | |
| 2015年5月 | 420.31 | 31.77 | 13.73 | … | 355.62 | 29.90 | 2 220.03 |
| 2015年6月 | 437.32 | 28.08 | 14.98 | … | 323.07 | 28.82 | 2 337.57 |
| 2015年7月 | 484.97 | 24.85 | 14.03 | … | 339.89 | 28.81 | 2 642.86 |
| | | | | | | | |
| 2023年1月 | 2 985.36 | 357.42 | 254.48 | … | 504.20 | 93.56 | 3 098.55 |
| 2023年2月 | 2 904.61 | 347.41 | 268.89 | … | 511.16 | 94.60 | 3 314.75 |
| 2023年3月 | 2 690.06 | 324.63 | 285.16 | … | 594.21 | 99.46 | 3 267.70 |
| 1 | SAFRIANTI E, SARI L O, SARI N A. Real-time network device monitoring system with simple network management protocol (SNMP) Model[C]//Proc. of the 3rd International Confe-rence on Research and Academic Community Services, 2021: 122-127. |
| 2 | SHMELKIN I, SPRINGER T. On adapting SNMP as communication protocol in distributed control loops for self-adaptive systems[C]//Proc. of the IEEE International Conference on Autonomic Computing and Self-organizing Systems, 2021: 61-70. |
| 3 | 董兴强, 李晓冰. 电信运营商网络流量采集模型研究及应用[J]. 移动通信, 2020, 44 (3): 67- 71. |
| DONG X Q , LI X B . Research and application of telecommunication operator network traffic collection model[J]. Mobile Communications, 2020, 44 (3): 67- 71. | |
| 4 | YANG B W, LIU D. Design of IP network traffic acquisition system based on xFlow[C]//Proc. of the IEEE 8th Joint International Information Technology and Artificial Intelligence Conference, 2019: 1631-1634. |
| 5 |
NIE L S , WANG H Z , JIANG X , et al. Traffic measurement optimization based on reinforcement learning in large-scale ITS-oriented backbone networks[J]. IEEE Access, 2020, 8, 36988- 36996.
doi: 10.1109/ACCESS.2020.2975238 |
| 6 | WANG M , LU Y Q , QIN J C . Source-based defense against DDoS attacks in SDN based on sFlow and SOM[J]. IEEE Access, 2021, 10, 2097- 2116. |
| 7 | 荣红佳, 盛虎, 闫秋婷. 基于改进R/S估计算法的网络流量长相关性分析[J]. 大连交通大学学报, 2021, 42 (2): 114- 119. |
| RONG H J , SHENG H , YAN Q T . Analysis of network traffic long correlation based on improved R/S estimation algorithm[J]. Journal of Dalian Jiaotong University, 2021, 42 (2): 114- 119. | |
| 8 |
ERRAMILLI A , ROUGHAN M , VEITCH D , et al. Self-similar traffic and network dynamics[J]. Proceedings of the IEEE, 2002, 90 (5): 800- 819.
doi: 10.1109/JPROC.2002.1015008 |
| 9 | OLGA V , FERNANDO R , LUIS J H , et al. New developments in time series and forecasting[J]. Engineering Proceedings, 2023, 39 (1): 135- 148. |
| 10 | 王婧, 鲍贵. 贝叶斯统计与传统统计方法的比较[J]. 统计与决策, 2021, 37 (1): 24- 29. |
| WANG J , BAO G . Comparison between bayesian statistics and traditional statistical methods[J]. Statistics & Decision, 2021, 37 (1): 24- 29. | |
| 11 |
LIU H , ZHANG X Y , YANG Y X , et al. Hourly traffic flow forecasting using a new hybrid modelling method[J]. Journal of Central South University, 2022, 29 (4): 1389- 1402.
doi: 10.1007/s11771-022-5000-2 |
| 12 | LIAO L C , HU Z Y , HSU C Y , et al. Fourier graph convolution network for time series prediction[J]. Mathematics, 2023, 11 (7): 122- 131. |
| 13 | XU G Q , XIA C S , QIAN J , et al. A network traffic prediction algorithm based on Prophet-EALSTM-GPR[J]. Journal on Internet of Things, 2023, 4 (2): 173- 182. |
| 14 | VACCARI I , CARLEVARO A , NARTENI S , et al. Xplainable and reliable against adversarial machine learning in data analytics[J]. IEEE Access, 2022, 10, 83949- 83970. |
| 15 | 史朝卫, 孟相如, 康巧燕, 等. 基于混合流量预测的虚拟网络拓扑重构方法[J]. 系统工程与电子技术, 2021, 43 (5): 1382- 1388. |
| SHI C W , MENG X R , KANG Q Y , et al. Virtual network topology reconfiguration approach based on hybrid traffic[J]. Systems Engineering and Electronics, 2021, 43 (5): 1382- 1388. | |
| 16 | YAO E Z , ZHANG L J , LI X H , et al. Traffic forecasting of back servers based on ARIMA-LSTM-CF hybrid model[J]. International Journal of Computational Intelligence Systems, 2023, 16 (1): 244- 256. |
| 17 | 王菁, 文晓东, 王春枝. 基于动态扩散卷积交互图神经网络的网络流量预测[J]. 计算机应用研究, 2023, 40 (1): 97- 101. |
| WANG J , WEN X D , WANG C Z . Network traffic prediction based on dynamic diffusion convolutional interaction graph neural network[J]. Application Research of Computers, 2023, 40 (1): 97- 101. | |
| 18 | YANG Y G , GENG S P , ZHANG B C , et al. Long term 5G network traffic forecasting via modeling non-stationarity with deep learning[J]. Communications Engineering, 2023, 2 (1): 135- 142. |
| 19 | ETNGU R , TAN C S , CHEE T C , et al. AI-assisted traffic matrix prediction using GA-enabled deep ensemble learning for hybrid SDN[J]. Computer Communications, 2023, 203 (2): 1124- 1131. |
| 20 | RAU F , SOTO I , ZABALABLANCO D , et al. A novel traffic prediction method using machine learning for energy efficiency in service provider networks[J]. Sensors, 2023, 23 (11): 155- 167. |
| 21 | SWETHA K, PRABU U, ANGEL G, et al. A study on traffic matrix estimation techniques in software-defined networks[C]//Proc. of the 6th International Conference on Electronics, Communication and Aerospace Technology, 2022: 604-611. |
| 22 | JIANG D D, HU G M. A novel approach to large-scale IP traffic matrix estimation based on RBF neural network[C]//Proc. of the 4th International Conference on Wireless Communications, Networking and Mobile Computing, 2008. |
| 23 | TRIEBE O, HEWAMALAGE H, PILYUGINA P, et al. NeuralProphet: explainable forecasting at scale[EB/OL]. [2023-04-10]. https://arxiv.org/pdf/2111.15397.pdf. |
| 24 | TAYLOR S J , LETHAM B . Forecasting at scale[J]. The American Statistician, 2018, 72 (1): 37- 45. |
| 25 | 孙慧慧, 刘强. 基于改进Huber损失的部分线性模型稳健经验似然推断[J]. 系统科学与数学, 2022, 42 (5): 1330- 1343. |
| SUN H H , LIU Q . Robust empirical likelihood inference of partial linear models based on improved huber loss[J]. Systems Science and Mathematical Sciences, 2022, 42 (5): 1330- 1343. | |
| 26 | WU X Y , FU S D , HE Z J . Research on short-term traffic flow combination prediction based on CEEMDAN and machine learning[J]. Applied Sciences, 2022, 13 (1): 1121- 1132. |
| 27 | JEBA N , RATHI S . Attention-based multiscale spatiotemporal network for traffic forecast with fusion of external factors[J]. ISPRS International Journal of Geo-Information, 2022, 11 (12): 323- 330. |
| 28 | LIN L , LI W Z , ZHU L . Data-driven graph filter-based graph convolutional neural network approach for network-level multi-step traffic prediction[J]. Sustainability, 2022, 14 (24): 211- 219. |
| 29 | DALAL A , IMTIAZ A , EBRAHIM A . Deep learning based network traffic matrix prediction[J]. International Journal of Intelligent Networks, 2021, 2 (1): 135- 142. |
| 30 | YANG W C , RUI H , ZHAO Q H . A sequence-to-sequence traffic predictor on software-defined networking[J]. International Journal of Web and Grid Services, 2021, 17 (3): 1210- 1221. |
| 31 | SAYED S A , YASSER H A , AHMED H H . Artificial intelligence-based traffic flow prediction: a comprehensive review[J]. Journal of Electrical Systems and Information Technology, 2023, 10 (1): 144- 153. |
| 32 | XIONG P P , CHEN S T , YAN S L . Time-delay nonlinear model based on interval grey number and its application[J]. Journal of Systems Engineering and Electronics, 2022, 33 (2): 370- 380. |
| 33 | LYU S T , LI X H , FAN T , et al. Deep learning for fast channel estimation in millimeter-wave MIMO systems[J]. Journal of Systems Engineering and Electronics, 2022, 33 (6): 1088- 1095. |
| [1] | GUO Xiao-jun, LIU Si-feng, FANG Zhi-geng. Self-memory prediction model of interval grey number based on grey degree of compound grey number [J]. Systems Engineering and Electronics, 2014, 36(6): 1124-1129. |
| [2] | WANG Da-peng,WANG Bing-wen,LI Rui-fan. Improved prediction model of interval grey number based on the characteristics of grey degree of compound grey number [J]. Journal of Systems Engineering and Electronics, 2013, 35(5): 1013-1017. |
| [3] | LIU Rui, KANG Rui, ZHANG Zhen-ying, HUANG Zhao-dong . Prediction model for allocation efficiency of support equipment in products developing phase [J]. Journal of Systems Engineering and Electronics, 2011, 33(5): 1040-. |
| [4] | ZENG Bo. Prediction model of interval grey number based on kernel and degree of greyness [J]. Journal of Systems Engineering and Electronics, 2011, 33(4): 821-824. |
| [5] | TAN Jia-jia, ZHANG Jian-qiu. New waveform selection approach to tracking maneuver targets [J]. Journal of Systems Engineering and Electronics, 2011, 33(3): 515-522. |
| [6] | SHI Chun-sheng, MENG Da-peng. Supply risk prediction model of high-tech equipment manufacturing industry based on SVM [J]. Journal of Systems Engineering and Electronics, 2010, 32(8): 1667-1671. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||