| 1 | WANG L ,  TANG X M ,  LI J Y , et al.  Acceleration method for software signal simulators of BDS navigation signals and RDSS signals based on GPGPU[J]. IEEE Access, 2019, 7, 102843- 102851. doi: 10.1109/ACCESS.2019.2926323
 | 
																													
																							| 2 | YAO Z, LU M Q. Constant envelope combination for components on different carrier frequencies with unequal power allocation[C]//Proc. of the International Technical Meeting of the Institute of Navigation, 2013: 629-637. | 
																													
																							| 3 | NAYAK B S ,  BHONGE S ,  NAIK K K , et al.  Multi GNSS IRNSS-L5, IRNSS-S1, and GPS-L1 hybrid simulator: a recon- figurable low-cost solution for research and defence applications[J]. Defence Science Journal, 2022, 72 (4): 581- 591. doi: 10.14429/dsj.72.17873
 | 
																													
																							| 4 | LESTARQUIT L, ARTAUD G, ISSLER J L. AltBOC for dummies or everything you always wanted to know about AltBOC[C]//Proc. of the 21st International Technical Meeting of the Satellite Division of the Institute of Navigation, 2008: 961-970. | 
																													
																							| 5 | MIKHAYLOVA O K, KOROGODIN I V. BOC-by-BPSK signal processing algorithm for BOC and AltBOC signals[C]//Proc. of the 3rd International Youth Conference on Radio Electronics, Electrical and Power Engineering, 2021. | 
																													
																							| 6 | YAO Z ,  ZHANG J Y ,  LU M Q .  ACE-BOC: dual-frequency constant envelope multiplexing for satellite navigation[J]. IEEE Trans. on Aerospace and Electronic Systems, 2016, 52 (1): 466- 485. doi: 10.1109/TAES.2015.140607
 | 
																													
																							| 7 | MA J G ,  YANG Y K ,  YE L Y , et al.  Dual-sideband constant-envelope frequency-hopping binary offset carrier multiplexing modulation for satellite navigation[J]. Remote Sensing, 2022, 14 (16): 3871. doi: 10.3390/rs14163871
 | 
																													
																							| 8 | GAO Y, YAO Z, LU M Q. Exploring the ultra-high-precision ranging potential of BDS B1 signal[C]//Proc. of the 33rd International Technical Meeting of the Satellite Division of the Institute of Navigation, 2020: 3626-3646. | 
																													
																							| 9 | GAO Y ,  YAO Z ,  LU M Q .  High-precision unambiguous tracking technique for BDS B1 wideband composite signal[J]. Navigation, 2020, 67 (3): 633- 650. doi: 10.1002/navi.377
 | 
																													
																							| 10 | SYMEONIDIS C, NIKOLAIDIS N. Simulation environments[M]//IOSIFIDIS A, TEFAS A, ed. Deep Learning for Robot Perception and Cognition. New York: Academic Press, 2022: 461-490. | 
																													
																							| 11 | ERNEST H, PANY T, SANROMA D, et al. Enhancing the capability of a COTS GNSS signal simulator via an interface to a software-based signal generator[C]//Proc. of the 35th International Technical Meeting of the Satellite Division of the Institute of Navigation, 2022: 3283-3293. | 
																													
																							| 12 | ZHANG G, ICKING L, HSU L T, et al. A study on multipath spatial correlation for GNSS collaborative positioning[C]//Proc. of the 34th International Technical Meeting of the Satellite Division of the Institute of Navigation, 2021: 2430-2444. | 
																													
																							| 13 | LENHART M, SPANGHERO M, PAPADIMITRATOS P. Relay/replay attacks on GNSS signals[C]//Proc. of the 14th ACM Conference on Security and Privacy in Wireless and Mobile Networks, 2021: 380-382. | 
																													
																							| 14 | PECHERITSA D S ,  BURTSEV S Y ,  FROLOV A A .  Method for determining the fractional part of the cycle of the carrier frequency of the navigation signal of the GNSS signal simulator[J]. Measurement Techniques, 2021, 63, 891- 898. doi: 10.1007/s11018-021-01868-7
 | 
																													
																							| 15 | GUO Y ,  WU M P ,  TANG K H , et al.  Covert spoofing algorithm of UAV based on GPS/INS-integrated navigation[J]. IEEE Trans. on Vehicular Technology, 2019, 68 (7): 6557- 6564. doi: 10.1109/TVT.2019.2914477
 | 
																													
																							| 16 | XIAO W. Analysis and detection of GPS spoofing attacks in cyber physical systems[D]. Singapore: National University of Singapore, 2022. | 
																													
																							| 17 | AKOS D, ARRIBAS J, BHUIYAN M Z H, et al. GNSS software defined radio: history, current developments, and standar-dization efforts[C]//Proc. of the 35th International Technical Meeting of the Satellite Division of the Institute of Navigation, 2022: 3180-3209. | 
																													
																							| 18 | KUMARIN A A, KUDRYAVTSEV I A. SoC opportunities for boosting SDR GNSS performance[C]//Proc. of the International Conference on Information and Nanotechnology, 2019: 457-462. | 
																													
																							| 19 | PANY T, DÖTTERBÖCK D, GÓMEZ-MARTÍNEZ H, et al. The multi-sensor navigation analysis tool (MuSNAT)-architecture, LiDAR, GPU/CPU GNSS signal processing[C]//Proc. of the 32nd International Technical Meeting of the Satellite Division of the Institute of Navigation, 2019: 4087-4115. | 
																													
																							| 20 | YAO Z ,  LU M Q .  Signal multiplexing techniques for GNSS: the principle, progress, and challenges within a uniform framework[J]. IEEE Signal Processing Magazine, 2017, 34 (5): 16- 26. doi: 10.1109/MSP.2017.2713882
 | 
																													
																							| 21 | SEMANJSKI S, MULS A, SEMANJSKI I, et al. Use and validation of supervised machine learning approach for detection of GNSS signal spoofing[C]//Proc. of the International Confe-rence on Localization and GNSS, 2019. | 
																													
																							| 22 | AVILA-RODRIGUEZ J A ,  HEIN G W ,  WALLNER S , et al.  The MBOC modulation: the final touch to the Galileo frequency and signal plan[J]. Navigation, 2008, 55 (1): 15- 28. doi: 10.1002/j.2161-4296.2008.tb00415.x
 | 
																													
																							| 23 | LU Z K ,  CHEN F Q ,  XIE Y C , et al.  High precision pseudo-range measurement in GNSS anti-jamming antenna array processing[J]. Electronics, 2020, 9 (3): 412. doi: 10.3390/electronics9030412
 | 
																													
																							| 24 | FAN G F, XU X Y, CUI X W, et al. A high-fidelity wideband signal software simulator for GNSS antenna arrays accelerated by GPU[C]//Proc. of the International Technical Meeting of the Institute of Navigation, 2019: 197-208. | 
																													
																							| 25 | 黄文涛. 基于GPU的GNSS多模信号高效模拟技术研究[D]. 南京: 南京航空航天大学, 2020. | 
																													
																							|  | HUANG W T. Research on high efficiency simulation techno-logy of GNSS multimode signal based on GPU[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2020. | 
																													
																							| 26 | LI Q S, YAO Z, LI H, et al. A CUDA-based real-time software GNSS IF signal simulator[C]//Proc. of the China Satellite Navigation Conference, 2012: 359-369. | 
																													
																							| 27 | 李秋实, 姚铮, 陆明泉.  改进的软件GNSS中频信号模拟器设计[J]. 计算机仿真, 2013, 30 (1): 120-123, 249. | 
																													
																							|  | LI Q S ,  YAO Z ,  LU M Q .  Design and optimization of GPU-based real-time software GNSS signal simulator[J]. Computer Simulation, 2013, 30 (1): 120-123, 249. | 
																													
																							| 28 | SHI P L ,  WU S X ,  ZENG T , et al.  Satellite navigation simulation signal generation method based on GPU acceleration[J]. Signal, 2021, 20, 39- 49. | 
																													
																							| 29 | ZHANG B, LIU G B, LIU D, et al. Real-time software GNSS signal simulator accelerated by cuda[C]//Proc. of the 2nd International Conference on Future Computer and Communication, 2010. | 
																													
																							| 30 | YAO Z ,  GUO F ,  MA J J , et al.  Orthogonality-based genera-lized multicarrier constant envelope multiplexing for DSSS signals[J]. IEEE Trans. on Aerospace and Electronic Systems, 2017, 53 (4): 1685- 1698. doi: 10.1109/TAES.2017.2671580
 | 
																													
																							| 31 | 朱亮, 姚铮, 陆明泉, 等.  Compass B1信号设计中的非对称ALTBOC复用技术[J]. 清华大学学报: 自然科学版, 2012, 52 (6): 869- 873. | 
																													
																							|  | ZHU L ,  YAO Z ,  LU M Q , et al.  Non-symmetrical ALTBOC multiplexing for compass B1 si design[J]. Journal of Tsinghua University (Science and Technology), 2012, 52 (6): 869- 873. | 
																													
																							| 32 | BA X H. BDS-B1-CUDA[EB/OL]. [2023-02-16]. https://github.com/baxiaohui/BDS-B1-CUDA. |