Systems Engineering and Electronics ›› 2024, Vol. 46 ›› Issue (10): 3519-3527.doi: 10.12305/j.issn.1001-506X.2024.10.28
• Guidance, Navigation and Control • Previous Articles
Chenyuan QIAO, Leping YANG
Received:
2023-11-08
Online:
2024-09-25
Published:
2024-10-22
Contact:
Leping YANG
CLC Number:
Chenyuan QIAO, Leping YANG. Design and optimization of Earth-Moon L1 low-energy transfer orbit[J]. Systems Engineering and Electronics, 2024, 46(10): 3519-3527.
1 | RAUSCH R R. Earth to Halo orbit transfer trajectories[D]. West Lafayette: Indiana: Purdue University, 2005. |
2 | PARKER J S, ANDERSON R L. Low-energy lunar trajectory design[M]. Hoboken: Wiley, 2014. |
3 |
TAN M H , ZHANG K , WANG J Y . Optimization of bi-impulsive Earth-Moon transfers using periodic orbits[J]. Astrophysics and Space Science, 2021, 366, 19.
doi: 10.1007/s10509-021-03926-6 |
4 |
ZHANG R Y . A review of periodic orbits in the circular restricted three-body problem[J]. Journal of Systems Engineering and Electronics, 2022, 33 (3): 612- 646.
doi: 10.23919/JSEE.2022.000059 |
5 |
GÓMEZ G , KOON W S , LO M W , et al. Connecting orbits and invariant manifolds in the spatial restricted three-body problem[J]. Nonlinearity, 2004, 17 (5): 1571- 1606.
doi: 10.1088/0951-7715/17/5/002 |
6 | BARDEN B T. Using stable manifolds to generate transfers in the circular restricted problem of three bodies[D]. West Lafayette: Purdue University, 1994. |
7 | HOWELL K C, MAINS D L, BARDEN B T. Transfer trajectories from Earth parking orbits to Sun-Earth Halo orbits[C]//Proc. of the AAS/AIAA Astrodynamics Specialist Conference, 1994: 94-160. |
8 |
JIN Y , XU B . Three-maneuver transfers from the cislunar L2 Halo orbits to low lunar orbits[J]. Advances in Space Research, 2022, 69 (2): 989- 999.
doi: 10.1016/j.asr.2021.10.016 |
9 |
SANTOS L B T , SOUSA-SILVA P A , TERRA M O , et al. Optimal transfers from Moon to L2 Halo orbit of the Earth-Moon system[J]. Advances in Space Research, 2022, 70 (11): 3362- 3372.
doi: 10.1016/j.asr.2022.08.035 |
10 |
徐明, 徐世杰. 地-月系平动点及Halo轨道的应用研究[J]. 宇航学报, 2006, 27 (4): 695- 699.
doi: 10.3321/j.issn:1000-1328.2006.04.025 |
XU M , XU S J . The application of libration points and Halo orbits in the earth-moon system to space mission design[J]. Journal of Astronautics, 2006, 27 (4): 695- 699.
doi: 10.3321/j.issn:1000-1328.2006.04.025 |
|
11 | 于锡峥, 郑建华, 高怀宝, 等. 地-月系L1和L2点间转移轨道设计[J]. 吉林大学学报(工学版), 2008, 38 (3): 741- 745. |
YU X Z , ZHENG J H , GAO H B , et al. Transfer trajectory design between L1 and L2 in the Earth-Moon system[J]. Journal of Jilin University (Engineering and Technology Edition), 2008, 38 (3): 741- 745. | |
12 | 连一君. 基于三体平动点的低能转移轨道设计研究[D]. 长沙: 国防科学技术大学, 2008. |
LIAN Y J. Research on low-cost transfer trajectory design based on three-body libration points[D]. Changsha: National University of Defense Technology, 2008. | |
13 | 张汉清, 李言俊. 地月三体问题下L1-地球低能转移轨道设计[J]. 哈尔滨工业大学学报, 2011, 43 (5): 84- 88. |
ZHANG H Q , LI Y J . Design of L1-Earth low energy transfer trajectory in Earth-Moon three-body problem[J]. Journal of Harbin Institute of Technology, 2011, 43 (5): 84- 88. | |
14 |
ROSALES J J , JORBA À , JORBA-CUSCÓ M . Transfers from the Earth to L2 Halo orbits in the Earth-Moon bicircular problem[J]. Celestial Mechanics and Dynamical Astronomy, 2021, 133, 55.
doi: 10.1007/s10569-021-10054-4 |
15 |
NEELAKANTAN R , RAMANAN R V . Two-impulse transfer to multi-revolution Halo orbits in the Earth-Moon elliptic restricted three body problem framework[J]. Journal of Astrophysics and Astronomy, 2022, 43 (2): 50- 66.
doi: 10.1007/s12036-022-09830-x |
16 | FOLTA D, BOSANAC N, ELLIOTT I, et al. Astrodynamics convention and modeling reference for Lunar, Cislunar, and libration point orbits[R]. Hampton: NASA Langley Research Center, 2022: 127-145. |
17 | SINGH S K , ANDERSON B D , TAHERI E , et al. Exploiting manifolds of L1 Halo orbits for end-to-end Earth-Moon low-thrust trajectory design[J]. Acta Astronautica, 2021, 183 (1): 255- 272. |
18 |
OSHIMA K . Optimization-blemaided, low-energy transfers via vertical instability around Earth-Moon L1[J]. Journal of Guidance, Control, and Dynamics, 2021, 44 (2): 389- 398.
doi: 10.2514/1.G005159 |
19 | DU C , STARINOVA O L , LIU Y . Transfer between the planar Lyapunov orbits around the Earth-Moon L2 point using low-thrust engine[J]. Acta Astronautica, 2022, 201 (1): 513- 525. |
20 |
DU C , STARINOVA O L , LIU Y . Low-thrust transfer dynamics and control between Halo orbits in the Earth-Moon system by means of invariant manifold[J]. IEEE Trans.on Aerospace and Electronic Systems, 2023, 59 (4): 3452- 3462.
doi: 10.1109/TAES.2022.3225781 |
21 | WANG Y , ZHANG R K , ZHANG C , et al. Transfers between NRHOs and DROs in the Earth-Moon system[J]. Acta Astronautica, 2021, 186 (1): 60- 73. |
22 | CAPDEVILA L , GUZZETTI D , HOWELL K . Various transfer options from Earth into distant retrograde orbits in the vicinity of the Moon[J]. Advances in the Astronautical Sciences, 2014, 152, 3659- 3678. |
23 |
CAPDEVILA L R , HOWELL K C . A transfer network linking Earth, Moon, and the triangular libration point regions in the Earth-Moon system[J]. Advances in Space Research, 2018, 62 (7): 1826- 1852.
doi: 10.1016/j.asr.2018.06.045 |
24 | ZIMOVAN E M, HOWELL K C, DAVIS D C. Near rectilinear Halo orbits and their application in cislunar space[C]//Proc. of the 3rd AIAA Conference on Dynamics and Control of Space Systems, 2017: 20-40. |
25 |
BOUDAD K K , HOWELL K C , DAVIS D C . Dynamics of synodic resonant near rectilinear Halo orbits in the bicircular four-body problem[J]. Advances in Space Research, 2020, 66 (9): 2194- 2214.
doi: 10.1016/j.asr.2020.07.044 |
26 | TROFIMOV S , SHIROBOKOV M , TSELOUSOVA A , et al. Transfers from near-rectilinear Halo orbits to low-perilune orbits and the Moon's surface[J]. Acta Astronautica, 2020, 167 (1): 260- 271. |
27 | 李翔宇, 乔栋, 程潏. 三体轨道动力学研究进展[J]. 力学学报, 2021, 53 (5): 1223- 1245. |
LI X Y , QIAO D , CHENG Y . Progress of three-body orbital dynamics study[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53 (5): 1223- 1245. | |
28 | CHOW C C, WETTERER C J, HILL K, et al. Cislunar periodic orbit families and expected observational features[C]//Proc. of the Advanced Maui Optical and Space Surveillance Technologies Conference, 2021. |
29 | 钱霙婧, 荆武兴, 刘玥, 等. 地月平动点拟周期轨道设计方法[J]. 系统工程与电子技术, 2014, 36 (8): 1586- 1594. |
QIAN Y J , JING W X , LIU Y , et al. Design of quasi periodic orbit about the translunar libration point[J]. Systems Engineering and Electronics, 2014, 36 (8): 1586- 1594. | |
30 | 李言俊, 张科, 吕梅柏, 等. 利用拉格朗日点的深空探测技术[M]. 西安: 西北工业大学出版社, 2015: 44- 49. |
LI Y J , ZHANG K , LYU M B , et al. Deep space exploration techniques using Lagrange points[M]. Xi'an: Northwestern Polytechnical University Press, 2015: 44- 49. | |
31 | WU L H , WANG Y N , YUAN X F , et al. Research and application of compound optimum model particle swarm optimization[J]. Journal of Systems Engineering and Electronics, 2006, 28 (7): 1087- 1090. |
[1] | QIAN Ying-jing, JING Wu-xing, LIU Yue, LI Jian-qing. Design of quasiperiodic orbit about the translunar libration point [J]. Systems Engineering and Electronics, 2014, 36(8): 1586-1594. |
[2] | LIU Lei1,2, LI Xie1,2, CAO Jianfeng1,2, TANG Geshi1,2, HU Songjie1,2. Transfer scheme of CHANG’E2 from the SunEarth #br# L2 point to the L1 point [J]. Systems Engineering and Electronics, 2014, 36(7): 1386-1391. |
[3] | WU Wei-ren, LUO Hui,CHEN Ming,JIE De-gang,TANG Yu-hua. Design and experiment of deep space telemetry and data transmission system in Libration points 2 exploring [J]. Journal of Systems Engineering and Electronics, 2012, 34(12): 2559-2563. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||