Systems Engineering and Electronics ›› 2023, Vol. 45 ›› Issue (7): 2269-2279.doi: 10.12305/j.issn.1001-506X.2023.07.38
• Reliability • Previous Articles Next Articles
Chunfeng DING, Jianjun WANG
Received:
2022-08-11
Online:
2023-06-30
Published:
2023-07-11
Contact:
Jianjun WANG
CLC Number:
Chunfeng DING, Jianjun WANG. Robust parameter design based on Kriging model[J]. Systems Engineering and Electronics, 2023, 45(7): 2269-2279.
Table 1
Variables description of borehole model"
变量 | 名称 | 下界 | 上界 |
rw | 钻孔半径/m | 0.05 | 0.15 |
r | 影响半径/m | 100.00 | 50 000.00 |
Tu | 上部含水层渗透率/(m2/yr) | 63 070.00 | 115 600.00 |
Hu | 上部含水层电位头/m | 990.00 | 1 110.00 |
Tl | 下部含水层渗透率/(m2/yr) | 63.10 | 116.00 |
Hl | 下部含水层电位头/m | 700.00 | 820.00 |
L | 钻孔长度/m | 1 120.00 | 1 680.00 |
Kw | 钻孔水力传导率/(m/yr) | 1 500.00 | 15 000.00 |
Table 2
Optimization results of numerical examples"
数值算例 | 优化方法 | 评价指标 | ||
OE1 | OE2 | OE3 | ||
算例1 | EI | -0.031 1 | 66.466 7 | 0.006 2 |
IECI | -0.037 4 | 60.666 7 | 0.000 7 | |
NIECI | -0.065 7 | 57.633 3 | 0.000 2 | |
算例2 | EI | -2.861 2 | 179.333 3 | 0.004 7 |
IECI | -2.997 2 | 162.566 7 | 0.000 4 | |
NIECI | -3.080 9 | 139.300 0 | 0.000 4 | |
算例3 | EI | 2.720 7 | 98.766 7 | 0.002 7 |
IECI | 2.651 9 | 102.300 0 | 0.027 2 | |
NIECI | 2.224 6 | 93.700 0 | 4.187 6e-05 |
1 |
ZHANG Y R , WANG G F , ZHANG Y L , et al. Crashworthiness design of car threshold based on aluminium foam sandwich structure[J]. International Journal of Crashworthiness, 2022, 27 (4): 1167- 1178.
doi: 10.1080/13588265.2021.1914978 |
2 |
RAMOS G N , SESSAREGO M , HORCAS S G . Aero-hydro-servo-elastic coupling of a multi-body finite-element solver and a multi-fidelity vortex method[J]. Wind Energy, 2021, 24 (5): 481- 501.
doi: 10.1002/we.2584 |
3 | 孙祥程, 韩忠华, 柳斐, 等. 高超声速飞行器宽速域翼型/机翼设计与分析[J]. 航空学报, 2018, 39 (6): 26- 37. |
SUN X C , HAN Z H , LIU F , et al. Design and analysis of hypersonic vehicle airfoil/wing at wide-range Mach numbers[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39 (6): 26- 37. | |
4 |
KLEIJNEN J P C . A comment on blanning's "metamodel for sensitivity analysis: the regression metamodel in simulation"[J]. Interfaces, 1975, 5 (3): 21- 33.
doi: 10.1287/inte.5.3.21 |
5 |
ZHAO H , GAO Z H , XU F , et al. Adaptive multi-fidelity sparse polynomial chaos-Kriging metamodeling for global approximation of aerodynamic data[J]. Structural and Multidisciplinary Optimization, 2021, 64 (2): 829- 858.
doi: 10.1007/s00158-021-02895-2 |
6 |
WANG G G , SHAN S . Review of metamodeling techniques in support of engineering design optimization[J]. Journal of Mechanical Design, 2007, 129 (4): 370- 380.
doi: 10.1115/1.2429697 |
7 | FORRESTER A , SOBESTER A , KEANE A . Engineering design via surrogate modelling: a practical guide[M]. New York: Wiley, 2008. |
8 | JIN R C , CHEN W , SIMPSON T W . Comparative studies of metamodeling techniques under multiple modeling Criteria[J]. Structural and Multidisciplinary Optimization, 2003, 23 (1): 1- 13. |
9 | 龙腾, 刘建, WANGG G, 等. 基于计算试验设计与代理模型的飞行器近似优化策略探讨[J]. 机械工程学报, 2016, 52 (14): 79- 105. |
LONG T , LIU J , WANG G G , et al. Discuss on approximate optimization strategies using design of computer experiments and metamodels for flight vehicle design[J]. Journal of Mechanical Engineering, 2016, 52 (14): 79- 105. | |
10 |
翟翠红, 汪建均, 冯泽彪. 基于高斯过程模型的多响应稳健参数设计[J]. 系统工程与电子技术, 2021, 43 (12): 3683- 3693.
doi: 10.12305/j.issn.1001-506X.2021.12.32 |
ZHAI C H , WANG J J , FENG Z B . Robust parameter design of multiple responses based on Gaussian process model[J]. Systems Engineering and Electronics, 2021, 43 (12): 3683- 3693.
doi: 10.12305/j.issn.1001-506X.2021.12.32 |
|
11 |
KLEIJNEN J P . Kriging metamodeling in simulation: a review[J]. European journal of operational research, 2009, 192 (3): 707- 716.
doi: 10.1016/j.ejor.2007.10.013 |
12 | JIN R C , DU X P , CHEN W . The use of metamodeling techniques for optimization under uncertainty[J]. Structural & Multidisciplinary Optimization, 2001, 25 (2): 99- 116. |
13 |
FORRESTER A , KEANE A . Recent advances in surrogate-based optimization[J]. Progress in Aerospace Sciences, 2009, 45 (1-3): 50- 79.
doi: 10.1016/j.paerosci.2008.11.001 |
14 |
LAURENCEAU J , MEAUX M , MONTAGNAC M , et al. Comparison of gradient-based and gradient-enhanced response-surface-based optimizers[J]. AIAA Journal, 2010, 48 (5): 981- 994.
doi: 10.2514/1.45331 |
15 |
JONES D R , SCHONLAU M , WELCH W J . Efficient global optimization of expensive black-box functions[J]. Journal of Global Optimization, 1998, 13 (4): 455- 492.
doi: 10.1023/A:1008306431147 |
16 |
ZHAN D W , XING H L . Expected improvement for expensive optimization: a review[J]. Journal of Global Optimization, 2020, 78 (3): 507- 544.
doi: 10.1007/s10898-020-00923-x |
17 |
HUANG D , ALLEN T T , NOTZ W I , et al. Global optimization of stochastic black-box systems via sequential kriging meta-models[J]. Journal of Global Optimization, 2006, 34 (3): 441- 466.
doi: 10.1007/s10898-005-2454-3 |
18 | WU J, FRAZIER P I. The parallel knowledge gradient method for batch Bayesian optimization[C]//Proc. of the 30th Conference on Neural Information Processing Systems, 2016: 3126-3134. |
19 |
PICHENY V , GINSBOURGER D , RICHET Y , et al. Quantile-based optimization of noisy computer experiments with tunable precision[J]. Technometrics, 2013, 55 (1): 2- 13.
doi: 10.1080/00401706.2012.707580 |
20 |
HAFTKA R T , VILLANUEVA D , CHAUDHURI A . Parallel surrogate-assisted global optimization with expensive functions—a survey[J]. Structural and Multidisciplinary Optimization, 2016, 54 (1): 3- 13.
doi: 10.1007/s00158-016-1432-3 |
21 | 张建侠, 马义中, 欧阳林寒, 等. 基于Kriging模型的多点加点准则和并行代理优化算法[J]. 系统工程理论与实践, 2020, 40 (1): 251- 261. |
ZHANG J X , MA Y Z , OUYANG L H , et al. A multi-points infill sampling criterion and parallel surrogate-based optimization algorithm based on Kriging model[J]. Systems Engineering-Theory & Practice, 2020, 40 (1): 251- 261. | |
22 | LIU J , SONG W , HAN Z H , et al. Efficient aerodynamic shape optimization of transonic wings using a parallel infilling strategy and surrogate models[J]. Structural & Multidisciplinary Optimization, 2017, 55 (3): 925- 943. |
23 | GRAMACY R B . Surrogates: Gaussian process modeling, design, and optimization for the applied sciences[M]. New York: Chapman and Hall, 2020. |
24 |
WANG Y , CAI Z X . Combining multiobjective optimization with differential evolution to solve constrained optimization problems[J]. IEEE Trans.on Evolutionary Computation, 2012, 16 (1): 117- 134.
doi: 10.1109/TEVC.2010.2093582 |
25 | QUAN N , YIN J , NG S H , et al. Simulation optimization via Kriging: a sequential search using expected improvement with computing budget constraints[J]. IISE Transactions, 2013, 45 (7): 763- 780. |
26 | HOADLEY A B , KETTENRING J . Communications between statisticians and engineers/physical scientists[J]. Technometrics, 1990, 32 (3): 243- 247. |
27 | 汪建均, 屠雅楠, 马义中. 结合SUR与因子效应原则的多响应质量设计[J]. 管理科学学报, 2020, 23 (12): 12- 29. |
WANG J J , TU Y N , MA Y Z . Multi-response quality design intergrating SUR models with factorial effect principles[J]. Journal of Management Sciences in China, 2020, 23 (12): 12- 29. | |
28 |
ABRAHAM B , MACKAY J , BOX G E P , et al. Taguchi's parameter design: a panel discussion[J]. Technometrics, 1992, 34 (2): 127- 161.
doi: 10.1080/00401706.1992.10484904 |
29 | RIBAUD M , BLANCHETS C , HELBERT C , et al. Robust optimization: a Kriging-based multi-objective optimization approach[J]. Reliability Engineering & System Safety, 2020, 200, 106913. |
30 | GRAMACY R B , GRAY G A , LE D S , et al. Modeling an augmented Lagrangian for blackbox constrained optimization[J]. Technometrics, 2016, 58 (1): 1- 11. |
31 | GRAMACY R B , APLEY D W . Local Gaussian process approximation for large computerexperiments[J]. Journal of Computational and Graphical Statistics, 2015, 24 (2): 561- 578. |
32 | XIONG S F , QIAN P Z , WU C J . Sequential design and analysis of high-accuracy and low-accuracy computer codes[J]. Technometrics, 2013, 55 (1): 37- 46. |
[1] | Xiaoying CHEN, Jianjun WANG, Shijuan YANG. Bayesian modeling and optimization based on semi-parametric hierarchy [J]. Systems Engineering and Electronics, 2023, 45(5): 1580-1588. |
[2] | Yan MA, Jianjun WANG, Zebiao FENG. Bayesian modeling and optimization of robust parametric design with non-normal response [J]. Systems Engineering and Electronics, 2023, 45(3): 921-930. |
[3] | Cuihong ZHAI, Jianjun WANG, Zebiao FENG. Robust parameter design of multiple responses based on Gaussian process model [J]. Systems Engineering and Electronics, 2021, 43(12): 3683-3693. |
[4] | Jia LIU, Kewei YANG, Jiang JIANG, Boyuan XIA. Parameter estimation method of equipment system based on multi-fidelity surrogate model [J]. Systems Engineering and Electronics, 2021, 43(1): 130-137. |
[5] | FENG Zebiao, WANG Jianjun. Multi-response robust parameter design based on covariant characteristics of model responses [J]. Systems Engineering and Electronics, 2019, 41(9): 2048-2057. |
[6] | YANG Shijuan, WANG Jianjun. Robust parameter design based on hierarchical Bayesian model [J]. Systems Engineering and Electronics, 2019, 41(10): 2293-2303. |
[7] | GU Xiaoguang, MA Yizhong, LIU Jian, WANG Jianjun. Robust parameter design for multivariate quality characteristics based on process capability index with individual observations [J]. Systems Engineering and Electronics, 2017, 39(2): 362-368. |
[8] | ZHANG Liu-yang, MA Yi-zhong, WANG Jian-jun, WU Feng. Robust parameter design and optimization for dynamic multi-response with the skewness characteristics [J]. Systems Engineering and Electronics, 2016, 38(2): 339-346. |
[9] | DENG Hai-song,MA Yi-zhong,SHAO Wen-ze. Bayesian meta modeling for Kriging utilizing noninformative hyper prior [J]. Journal of Systems Engineering and Electronics, 2010, 32(11): 2341-2345. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||