Systems Engineering and Electronics ›› 2023, Vol. 45 ›› Issue (4): 1111-1120.doi: 10.12305/j.issn.1001-506X.2023.04.19
• Systems Engineering • Previous Articles
Bowen YUAN, Dongbo LIU, Zhaopeng LIU, Yanan LI
Received:
2022-02-02
Online:
2023-03-29
Published:
2023-03-28
Contact:
Bowen YUAN
CLC Number:
Bowen YUAN, Dongbo LIU, Zhaopeng LIU, Yanan LI. Modeling method of operational plan based on improved behavior tree[J]. Systems Engineering and Electronics, 2023, 45(4): 1111-1120.
Table 1
Red and blue operational force"
阵营 | 武器装备 | 部署地 | 数量 |
红方 | 指挥所C | Area-1 | 1 |
红方 | 远程防空武器系统A1 | Area-1 | 1 |
红方 | 近程防空武器系统A2 | Area-1 | 1 |
红方 | 雷达站L | Area-1 | 1 |
红方 | 机场J-1 | Area-1 | 1 |
红方 | 机场J-2 | Area-2 | 1 |
红方 | Y型预警机 | J-1 | 2 |
红方 | M1型战斗机 | J-1 | 12 |
红方 | M2型战斗机 | J-2 | 16 |
红方 | D型电子战飞机 | J-2 | 8 |
红方 | H1型驱逐舰 | Area-1附近 | 2 |
红方 | H2型巡洋舰 | Area-1附近 | 2 |
蓝方 | 机场J-3 | Area-3 | 1 |
蓝方 | S1型驱逐舰 | Area-4 | 2 |
蓝方 | S2型巡洋舰 | Area-4 | 2 |
蓝方 | S3型航母 | Area-4 | 1 |
蓝方 | F1型战斗机 | J-3 | 14 |
蓝方 | R型侦察无人机 | J-3 | 2 |
蓝方 | F2型舰载战斗机 | S3型航母 | 18 |
蓝方 | E型预警机 | S3型航母 | 2 |
Table 3
Red operational task description table"
作战阶段 | 任务代号 | 任务说明 | 执行力量 | 作战阶段 | 任务代号 | 任务说明 | 执行力量 | |
1 | T1 | 预警机巡逻预警 | Y_1 | 2 | T13 | Y型预警机区域探测 | Y_2 | |
1 | T2 | M1型战斗机为预警机Y_1护航 | M1_1, M1_2 | 2 | T14 | M2型战斗机为预警机Y_1护航 | M2_1, M2_2 | |
1 | T3 | M1型战斗机区域巡逻 | M1_3, M1_4 | 2 | T15 | M2型战斗机为预警机Y_2护航 | M2_3, M2_4 | |
1 | T4 | M1型战斗机区域巡逻 | M1_5, M1_6 | 2 | T16 | M1型战斗机对空拦截作战范围敌方飞机 | M1_1, M1_2, M1_3, M1_4 | |
1 | T5 | M1型战斗机区域巡逻 | M1_9, M1_10 | 2 | T17 | M1型战斗机对空拦截作战范围敌方飞机 | M1_5, M1_6, M1_7, M1_8 | |
1 | T6 | H1型驱逐舰对海空搜索警戒 | H1_1, H1_2 | 2 | T18 | M1型战斗机对空拦截作战范围敌方飞机 | M1_9, M1_10, M1_11, M1_12 | |
1 | T7 | H2型巡洋舰海空搜索警戒 | H2_1, H2_2 | 2 | T19 | D型电子战飞机支援M1型战斗机执行电子干扰任务 | D_1 | |
2 | T8 | 远程防空武器系统A1自主防空拦截 | A1 | 2 | T20 | D型电子战飞机支援M1型战斗机执行电子干扰任务 | D_2 | |
2 | T9 | 近程防空武器系统A2自主防空拦截 | A2 | 2 | T21 | D型电子战飞机支援M1型战斗机执行电子干扰任务 | D_3 | |
2 | T10 | H1型驱逐舰自主防空拦截 | H1_1, H1_2 | 2 | T22 | M2型战斗机机动组成双机编队对敌方飞机进行拦截 | M2_5, M2_6, …, M2_16 | |
2 | T11 | H2型巡洋舰自主防空拦截 | H2_1, H2_2 | 2 | T23 | D型电子战飞机支援M2型战斗机执行电子干扰任务 | D_4, D_5, …, D_8 | |
2 | T12 | Y型预警机区域探测 | Y_1 | - | - | - | - |
1 |
朱旋, 江泽强, 陈睿. 基于UML的联合作战方案计划可视化视图建模[J]. 指挥与控制学报, 2018, 4 (1): 73- 82.
doi: 10.3969/j.issn.2096-0204.2018.01.0073 |
ZHU X , JIANG Z Q , CHEN R . Modeling for joint operation planning visualization views based on UML[J]. Journal of Command and Control, 2018, 4 (1): 73- 82.
doi: 10.3969/j.issn.2096-0204.2018.01.0073 |
|
2 | United States Department of Defense. Core plan representation(CPR)[EB/OL]. [2022-01-23]. http://reliant.teknowledge.com/CPR2/. |
3 | POLYAK S, TATE A. Planning intiative: Shared planning and activity representation-SPAR version 0.2: request for comments[EB/OL]. [2019-3-23]. http://www.aiai.ed.ac.uk/~arpi/spar/spar-doc02.html. |
4 | United States Department of Defense. Joint publication 5-0: joint planning[EB/OL]. [2022-01-23]. http://www.dtic.mil/doctrine/jel/new_pubs/jp5_0.pdf. |
5 | 毛翔, 杨晓波. 美军联合作战行动筹划及计划制定流程[M]. 北京: 军事科学出版社, 2017. |
MAO X , YANG X B . US joint operations planning and planning process[M]. Beijing: Military Science Press, 2017. | |
6 | 程恺, 陈刚, 尹成祥, 等. 作战行动序列核心本体建模及其推理方法[J]. 系统工程与电子技术, 2018, 40 (4): 805- 814. |
CHENG K , CHEN G , YIN C X , et al. Core ontology modeling and reasoning method for course of action[J]. Systems Engineering and Electronics, 2018, 40 (4): 805- 814. | |
7 | MUNOZ P , KARKHANIS P . Modeling objects with uncertain behaviors[J]. Journal of Object Technology, 2021, 20 (3): 8. |
8 |
FU C , LIU J H , WANG S D . Building SysML model graph to support the system model reuse[J]. IEEE Access, 2021, 9, 132374- 132389.
doi: 10.1109/ACCESS.2021.3115165 |
9 | SISO-STD-007-2008. Standard for military scenario definition language (MSDL)[S]. USA: Simulation Interoperability Standards Organization, 2008. |
10 | 王锐. 基于网络计划图的联合作战方案建模与分析[D]. 长沙: 国防科技大学, 2018. |
WANG R. Modeling and analysis of joint operations based on network planning diagram[D]. Changsha: National University of Defense Technology, 2018. | |
11 |
GEORGIEVSKI I , AIELLO M . HTN planning: overview, comparison, and beyond[J]. Artificial Intelligence, 2015, 222, 124- 156.
doi: 10.1016/j.artint.2015.02.002 |
12 |
XU X , YANG M , LI G . Adaptive CGF commander behavior modeling through HTN guided monte carlo tree search[J]. Journal of Systems Science and Systems Engineering, 2018, 27 (2): 231- 249.
doi: 10.1007/s11518-018-5366-8 |
13 |
ZHOU J F , RENIERS G . Petri-net based simulation analysis for emergency response to multiple simultaneous large-scale Fires[J]. Journal of Loss Prevention in the Process Industries, 2016, 40, 554- 56.
doi: 10.1016/j.jlp.2016.01.026 |
14 | JIN X , WU F H . Autonomous intelligent decision-making system for humanoid soccer robots based on timed petri network[J]. Basic & Clinical Pharmacology & Toxicology, 2020, 127 (5): 126- 127. |
15 |
DAN Y , OUSSAMA K , WANG S G . Computation of minimal siphons in Petri nets using problem partitioning approaches[J]. IEEE/CAA Journal of Automatica Sinica, 2022, 9 (2): 329- 338.
doi: 10.1109/JAS.2021.1004326 |
16 |
MUKHERJEE K , RAY A . State splitting and merging in probabilistic finite state automata for signal representation and analysis[J]. Signal Processing, 2014, 104, 105- 119.
doi: 10.1016/j.sigpro.2014.03.045 |
17 |
FERNANDEZ-ISABL , PEIXOTO P , DIEGO I M , et al. Combining dynamic finite state machines and text-based similarities to represent human behavior[J]. Engineering Applications of Artificial Intelligence, 2019, 85, 504- 516.
doi: 10.1016/j.engappai.2019.07.006 |
18 | FALZON L . Using Bayesian network analysis to support centre of gravity analysis in military planning[J]. European Journal of Operational Research, 2004, 170 (2): 629- 643. |
19 |
JING L T , MA J F , XIE J , et al. A conceptual design decision approach by integrating rough Bayesian network and game theory under uncertain behavior selections[J]. Expert Systems With Applications, 2022, 202, 117108.
doi: 10.1016/j.eswa.2022.117108 |
20 |
KIDD M . Applying Bayesian belief networks as a tool for structuring and evaluating the planning of nanval operations[J]. Military Operations Research, 2002, 7 (4): 25- 34.
doi: 10.5711/morj.7.4.25 |
21 | PUGA G F, GOMEZ-MARTIN M A, DIAZ-AGUDO B, et al. Dynamic expansion of behavior trees[C]//Proc. of the Artificial Intelligence and Interactive Digital Entertainment Conference, 2008: 22-24. |
22 |
YANNICK F , BOUCHARD B , BOUCHARD K , et al. Modeling, learning, and simulating human activities of daily living with behavior trees[J]. Knowledge and Information Systems, 2020, 62 (10): 3881- 3910.
doi: 10.1007/s10115-020-01476-x |
23 |
RYAN M , HOWARD J . Behavior trees for modelling artificial intelligence in games: a tutorial[J]. The Computer Games Journal, 2017, 6 (3): 171- 184.
doi: 10.1007/s40869-017-0040-9 |
24 | WODECKI A. Influence of artificial intelligence on activities and competitiveness of an organization[M]. Artificial Intelligence in Value Creation. Springer, 2019, 10(3): 133-246. |
25 | ABIYEV R H , AKKAYA N , AYTAC E , et al. Robot soccer control using behavior trees and fuzzy logic[J]. Procedia Computer Science, 2016, 102 (C): 477- 484. |
26 | 雷明剑, 于淼, 鲁赢. 作战任务协同过程形式化表达方法[J]. 装备学院学报, 2016, 27 (4): 96- 101. |
LEI M J , YU M , LU Y . Formalization description methods for operational coordination process[J]. Journal of Equipment Academy, 2016, 27 (4): 96- 101. | |
27 | 潘明聪, 贺毅辉, 徐伟, 等. 不确定性作战任务形式化描述方法[J]. 指挥控制与仿真, 2014, 36 (3): 28- 31. |
PAN M C , HE Y H , XU W , et al. Formal description for task allocation under uncertain environment[J]. Command Control and Simulation, 2014, 36 (3): 28- 31. | |
28 | 程恺, 车军辉, 张宏军, 等. 作战任务的形式化描述及其过程表示方法[J]. 指挥控制与仿真, 2012, 34 (1): 15- 19. |
CHENG K , CHE J H , ZHANG H J , et al. Formal description of operational task and its process expression[J]. Command Control and Simulation, 2012, 34 (1): 15- 19. | |
29 |
JIANG H B , LI S , LIN C , et al. Research on distributed target assignment based on dynamic allocation auction algorithm[J]. Journal of Physics: Conference Series, 2019, 1419 (1): 12001- 12011.
doi: 10.1088/1742-6596/1419/1/012001 |
30 | DUAN X J . A novel hybrid auction algorithm for multi-UAVs dynamic task assignment[J]. IEEE Access, 2020, 8, 86207- 86222. |
[1] | Zhiqiang JIAO, Jieyong ZHANG, Peiyang YAO, Xun WANG, Yichao HE. Distributed evolution method of C4ISR service deployment based on hierarchical structure [J]. Systems Engineering and Electronics, 2021, 43(6): 1572-1585. |
[2] | CHENG Kai, CHEN Gang, YIN Chengxiang, KANG Ruizhi, KANG Xingdang. Core ontology modeling and reasoning method for course of action [J]. Systems Engineering and Electronics, 2018, 40(4): 805-814. |
[3] | WU Ruijie, SUN Peng, SUN Yu. Distributed dynamic task plan adjustment model and algorithm [J]. Systems Engineering and Electronics, 2017, 39(2): 322-328. |
[4] | CHEN Ye-hua, WANG Hao, SONG Zhi-jie. Dynamic adjustment for emergency decision-making based on utility risk entropy [J]. Systems Engineering and Electronics, 2016, 38(9): 2093-2098. |
[5] | ZHANG Mengmeng, CHEN Honghui, LUO Aimin, LIU Junxian. #br# C4ISR system structure flexibility analysis based on dynamic adjustment [J]. Systems Engineering and Electronics, 2016, 38(3): 563-568. |
[6] | WANG Wei, YE Qiang, XIE Chun-si, LI Tao. Research on method of operational plan optimization for the warship formation based on prospect theory [J]. Systems Engineering and Electronics, 2015, 37(2): 331-335. |
[7] | LI Hao, CHANG Guo-cen, SUN Peng. Research on operational plan making system based on Agent [J]. Journal of Systems Engineering and Electronics, 2009, 31(1): 134-136. |
[8] | LI Hao, CHANG Guo-cen, SUN Peng. Research on operational plan making system based on Agent [J]. Journal of Systems Engineering and Electronics, 2009, 31(01): 134-136. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||