Systems Engineering and Electronics ›› 2023, Vol. 45 ›› Issue (12): 4073-4083.doi: 10.12305/j.issn.1001-506X.2023.12.38
• Reliability • Previous Articles
Xiaofeng XUE1, Guangduo XU1,*, Yunwen FENG1, Jiaqi LIU1, Tao GAO2, Shixi GUO2, Wei ZHANG3
Received:2023-03-20
Online:2023-11-25
Published:2023-12-05
Contact:
Guangduo XU
CLC Number:
Xiaofeng XUE, Guangduo XU, Yunwen FENG, Jiaqi LIU, Tao GAO, Shixi GUO, Wei ZHANG. Design of temperature stepping enhancement test profile based on component derating design[J]. Systems Engineering and Electronics, 2023, 45(12): 4073-4083.
| 1 | 谢少锋,张增照,聂国建.可靠性设计[M].北京:电子工业出版社,2015:417. |
| XIES F,ZHANGZ Z,NIEG J.Design for reliability[M].Beijing:Publishing House of Electronics Industry,2015:417. | |
| 2 | 温熙森,陈循,张春华,等.可靠性强化试验理论及应用[M].北京:科学出版社,2007:97-100. |
| WENX S,CHENX,ZHANGC H,et al.Reliability enhancement test theory and application[M].Beijing:Science Press,2007:97-100. | |
| 3 |
CHENY S,CHUONGL H.Efficiency improvement of the highly accelerated life testing system by using multiple hammers[J].Journal of Mechanical Science and Technology,2014,28(12):4815-4831.
doi: 10.1007/s12206-014-1102-6 |
| 4 | PANDEYV,KADEKODIP.Effective way of conducting highly accelerated life testing-linking the failure mode effects analysis and finite element analysis[J].Reliability: Theory & Applications,2016,11(43):78-83. |
| 5 |
SEUNGILP,NAMJUL,SEOYEONK,et al.Study on reliability critical item analysis for audio interface unit using highly accelerated life test and failure modes effects and criticality ana-lysis[J].Transactions of the Korean Society of Mechanical Engineers-A,2021,45(12):1049-1056.
doi: 10.3795/KSME-A.2021.45.12.1049 |
| 6 |
陈文华,贺青川,潘骏,等.机械产品可靠性试验技术研究现状与展望[J].中国机械工程,2020,31(1):72-82.
doi: 10.3969/j.issn.1004-132X.2020.01.008 |
|
CHENW H,HEQ C,PANJ,et al.Mechanical product reliability test technology research status and prospect[J].China Mechanical Engineering,2020,31(1):72-82.
doi: 10.3969/j.issn.1004-132X.2020.01.008 |
|
| 7 |
AWADM I.Printed wire assembly HASS profile development based on HALT[J].Microelectronics Reliability,2020,110,113702.
doi: 10.1016/j.microrel.2020.113702 |
| 8 |
陈循,陶俊勇,张春华.可靠性强化试验与加速寿命试验综述[J].国防科技大学学报,2002,24(4):29-32.
doi: 10.3969/j.issn.1001-2486.2002.04.008 |
|
CHENX,TAOJ Y,ZHANGC H.Review of reliability enhancement test and accelerated life test[J].Journal of National University of Defense Technology,2002,24(4):29-32.
doi: 10.3969/j.issn.1001-2486.2002.04.008 |
|
| 9 | 褚卫华. 模块级电子产品可靠性强化试验方法研究[D]. 长沙: 国防科学技术大学, 2003. |
| CHU W H. Research on reliability enhancement test methods for module-level electronic products[D]. Changsha: National University of Defense Technology, 2003. | |
| 10 | CHARKIA,LARONDER,GUERINF,et al.Robustness evaluation using highly accelerated life testing[J].The International Journal of Advanced Manufacturing Technology,2011,56(9):1253-1261. |
| 11 | REALD,CALVOD,MUSICOP,et al.Reliability studies for the white rabbit switch in KM3NeT: FIDES and highly acce- lerated life tests[J].Journal of Instrumentation,2020,15(2) |
| 12 | 刘加凯,齐杏林,王晓方,等.引信MEMS机构可靠性强化试验方法[J].探测与控制学报,2013,35(3):41-45. |
| LIUJ K,QIX L,WANGX F,et al.Fuse MEMS mechanism reliability enhancement test method[J].Journal of Detection and Control,2013,35(3):41-45. | |
| 13 | 杜晓辉,刘帅,朱敏杰,等.宽量程真空传感器可靠性强化试验及故障分析[J].真空科学与技术学报,2022,(10):745-753. |
| DUX H,LIUS,ZHUM J,et al.Reliability enhancement test and failure analysis of wide-range vacuum sensor[J].Journal of Vacuum Science and Technology,2022,(10):745-753. | |
| 14 |
冯帅,冯金富,覃文平,等.可靠性强化试验及其在某型机载吊舱关键模块的应用[J].火力与指挥控制,2016,41(9):146-150.
doi: 10.3969/j.issn.1002-0640.2016.09.033 |
|
FENGS,FENGJ F,TANW P,et al.Reliability enhancement test and its application in a key module of a certain type of airborne pod[J].Firepower and Command and Control,2016,41(9):146-150.
doi: 10.3969/j.issn.1002-0640.2016.09.033 |
|
| 15 | CATELANI M, CIANI L. Highly accelerated life testing for avionics devices[C]//Proc. of the IEEE Metrology for Aerospace, 2014: 418-422. |
| 16 | SAITOY,NAKAMURAT,NADAK,et al.Insulation resistance degradation mechanisms of multilayer ceramic capacitors during highly accelerated temperature and humidity stress tests[J].Japanese Journal of Applied Physics,2018,57(11S):11U. |
| 17 | CZERNY B, KHATIBI G. Highly accelerated lifetime testing in power electronics[C]//Proc. of the 54th International Symposium on Microelectronics, 2021: 390-396. |
| 18 | LIANGL Z,GUOW K,ZHANGH W,et al.Highly accele-rated life test for high speed spindle reliability[M].Singapore:Springer,2022:59-70. |
| 19 | HAND,BAIT Y.Design optimization of a simple step-stress accelerated life test-contrast between continuous and interval inspections with non-uniform step durations[J].Reliability Engineering & System Safety,2020,199,106875. |
| 20 | KHANM A,CHANDRAN.Optimal plan and estimation for bivariate step-stress accelerated life test under progressive type-I censoring[J].Pakistan Journal of Statistics and Operation Research,2021,17,683-694. |
| 21 | LINGM H,HUX W.Optimal design of simple step-stress accelerated life tests for one-shot devices under Weibull distributions[J].Reliability Engineering & System Safety,2020,193,106630. |
| 22 | 罗赓,穆希辉,牛跃听,等.加速度计步降应力加速寿命试验优化设计[J].机械设计,2016,33(4):78-83. |
| LUOG,MUX H,NIUY T,et al.Optimized design of acce-lerometer step stress reduction accelerated life test[J].Mecha- nical Design,2016,33(4):78-83. | |
| 23 | ZHUY,ELSAYEDE A.Design of accelerated life testing plans under multiple stresses[J].Naval Research Logistics,2013,60(6):468-478. |
| 24 | 吕萌,蔡金燕,潘刚,等.双应力交叉步降加速寿命试验优化设计蒙特卡罗仿真[J].电光与控制,2013,20(10):96-101. |
| LYUM,CAIJ Y,PANG,et al.Monte-Carlo simulation of the optimized design of double-stress cross-step-down accele-rated life test[J].Electro-optical and Control,2013,20(10):96-101. | |
| 25 | 刘维维. 典型元器件在高温环境下参数变化机理研究[D]. 太原: 中北大学, 2012. |
| LIU W W. Study on the parameter change mechanism of typical components in high temperature environment[D]. Taiyuan: North University of China, 2012. | |
| 26 | 朱文妍. 引信MEMS安全系统可靠性仿真研究[D]. 太原: 中北大学, 2021. |
| ZHU W Y. Reliability simulation study of fuzzy MEMS safety system[D]. Taiyuan: North Central University, 2021. | |
| 27 | 牟洪刚. 高价值弹药机电引信可靠性评估[D]. 西安: 西安电子科技大学, 2015. |
| MOU H G. Reliability assessment of electromechanical fuzes for high-value munitions[D]. Xi'an: Xi'an University of Electronic Science and Technology, 2015. | |
| 28 | 邱士起. 冲击作用下引信起爆控制系统关键元器件失效机理及其可靠性分析[D]. 北京: 北京理工大学, 2016. |
| QIU S Q. Failure mechanism of key components of fuze detonation control system under impact action and its reliability analysis[D]. Beijing: Beijing Institute of Technology, 2016. | |
| 29 | 肖龙远,李豇,胡斌,等.引信起爆控制电路冗余设计技术研究[J].火炮发射与控制学报,2022,43(1):54-58. |
| XIAOL Y,LIJ,HUB,et al.Research on redundancy design technology of fuse initiation control circuit[J].Journal of Arti-llery Firing and Control,2022,43(1):54-58. | |
| 30 | 恩云飞,来萍,李少平.电子元器件失效分析技术[M].北京:电子工业出版社,2015:294. |
| ENY F,LAIP,LIS P.Electronic component failure analysis technology[M].Beijing:Publishing House of Electronics Industry,2015:294. | |
| 31 | GJB150.1A-2009. 军用装备实验室环境试验方法第一部分[S]. 北京: 中国人民解放军总装备部电子信息基础部, 2009. |
| GJB150.1A-2009. Laboratory environmental test methods for military equipment Part I[S]. Beijing: Chinese Electronic Information Basic Department of the General Armament Department of the People's Liberation Army, 2009. | |
| 32 | GJB-Z53-93. 元器件降额准则[S]. 北京: 航空航天工业部, 1993. |
| GJB-Z53-93. Component derating guidelines[S]. Beijing: Mini- stry of Aerospace Industry, 1993. | |
| 33 | 李潇.某型空空导弹可靠性强化试验技术应用研究[J].电子产品可靠性与环境试验,2020,38(6):39-41. |
| LIX.Research on the application of reliability enhancement test technology for a certain type of air-to-air missile[J].Electronic Product Reliability and Environmental Testing,2020,38(6):39-41. | |
| 34 | 韩炎晖,娄文忠,冯跃,等.慢速烤燃环境下引信热响应特性测试与仿真[J].兵工学报,2019,40(5):946-953. |
| HANY H,LOUW Z,FENGY,et al.Testing and simulation of fuse thermal response characteristics under slow baking and burning environment[J].Journal of Military Engineering,2019,40(5):946-953. |
| [1] | Xuan WANG, Peng DI, Dongliang YIN. Conflict evidence fusion method based on Lance distance and credibility entropy [J]. Systems Engineering and Electronics, 2022, 44(2): 592-602. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||