Systems Engineering and Electronics ›› 2023, Vol. 45 ›› Issue (11): 3524-3531.doi: 10.12305/j.issn.1001-506X.2023.11.19
• Systems Engineering • Previous Articles Next Articles
Jiali WANG, Wenqi JIANG, Xiwen TAO
Received:
2022-04-18
Online:
2023-10-25
Published:
2023-10-31
Contact:
Wenqi JIANG
CLC Number:
Jiali WANG, Wenqi JIANG, Xiwen TAO. Spatial distance measure of Pythagorean fuzzy sets based on spatial information representation[J]. Systems Engineering and Electronics, 2023, 45(11): 3524-3531.
Table 1
Comparative analysis of basic properties and extended properties"
性质 | 对比文献 | |||||||
文献[ | 文献[ | 文献[ | 文献[ | |||||
性质3 | a(0.26, 0.22, ) | a(0.70, 0.35) | a(0.18, 0.36) | a(0.36, 0.72) | ||||
b(0.17, 0.22, ) | b(0.50, 0.25) | b(0.28, 0.56) | b(0.06, 0.12) | |||||
c(0.58, 0.22, ) | c(0.04, 0.02) | c(0.30, 0.60) | c(0.38, 0.76) | |||||
(0.036, 0.132, 0.167) | √ | (0.099, 0.305, 0.209) | √ | (0.093, 0.113, 0.019) | √ | (0.280, 0.022, 0.301) | √ | |
(0.039, 0.269, 0.308) | × | (0.158, 0.522, 0.364) | × | (0.159, 0.184, 0.033) | √ | (0.408, 0.048, 0.456) | × | |
性质5 | a(0.60, 0.55) | a(0.93, 0.18) | a(0.91, 0.34) | a(0.69, 0.65) | ||||
b(0.16, 0.57) | b(0.04, 0.21) | b(0.16, 0.39) | b(0.07, 0.66) | |||||
c(0.16, 0.64) | c(0.02, 0.57) | c(0.16, 0.52) | c(0.05, 0.73) | |||||
(0.182, 0.241, 0.154) | √ | (0.380, 0.408, 0.148) | √ | (0.329, 0.331, 0.054) | √ | (0.262, 0.268, 0.032) | √ | |
(0.541, 0.498, 0.313) | × | (0.690, 0.681, 0.258) | × | (0.564, 0.559, 0.084) | × | (0.504, 0.496, 0.069) | × | |
拓展性质1 | a(0.871, 0.259) | a(0.948, 0.092) | a(0.829, 0.405) | a(0.690, 0.340) | ||||
b(0.295, 0.106) | b(0.417, 0.067) | b(0.144, 0.355) | b(0.686, 0.337) | |||||
c(0.218, 0.865) | c(0.429, 0.893) | c(0.168, 0.718) | c(0.466, 0.604) | |||||
(0.261, 0.356, 0.321) | √ | (0.244, 0.383, 0.365) | √ | (0.295, 0.298, 0.154) | √ | (0.002, 0.139, 0.138) | √ | |
(0.701, 0.696, 0.718) | × | (0.376, 0.579, 0.588) | × | (0.504, 0.485, 0.565) | × | (0.005, 0.419, 0.420) | × | |
拓展性质2 | a(0.70, 0.27) | a(0.88, 0.20) | a(0.31, 0.89) | a(0.85, 0.19) | ||||
b(0.75, 0.40) | b(0.27, 0.37) | b(0.38, 0.78) | b(0.61, 0.30) | |||||
c(0.24, 0.74) | c(0.39, 0.66) | c(0.54, 0.81) | c(0.66, 0.38) | |||||
(0.062, 0.263, 0.246) | √ | (0.269, 0.272, 0.135) | √ | (0.061, 0.10, 0.084) | √ | (0.112, 0.116, 0.041) | √ | |
(0.138, 0.455, 0.458) | × | (0.449, 0.429, 0.222) | × | (0.105, 0.139, 0.153) | × | (0.346, 0.095, 0.330) | × | |
拓展性质3 | a(0.91, 0.35) | a(0.66, 0.42) | a(0.35, 0.25) | a(0.83, 0.51) | ||||
b(0.47, 0.47) | b(0.60, 0.47) | b(0.26, 0.27) | b(0.82, 0.33) | |||||
c(0.48, 0.41) | c(0.39, 0.14) | c(0.15, 0.05) | c(0.57, 0.47) | |||||
(0.206, 0.210, 0.025) | √ | (0.032, 0.166, 0.165) | √ | (0.037, 0.114, 0.099) | √ | (0.087, 0.138, 0.122) | √ | |
(0.576, 0.564, 0.0487) | × | (0.051, 0.277, 0.281) | × | (0.072, 0.199, 0.203) | × | (0.196, 0.298, 0.355) | × | |
拓展性质4 | a(0.87, 0.42) | a(0.48, 0.22) | a(0.86, 0.07) | a(0.47, 0.20) | ||||
b(0.45, 0.50) | b(0.17, 0.13) | b(0.13, 0.18) | b(0.09, 0.09) | |||||
c(0.46, 0.69) | c(0.19, 0.59) | c(0.24, 0.69) | c(0.23, 0.27) | |||||
(0.196, 0.205, 0.084) | √ | (0.188, 0.189, 0.132) | √ | (0.309, 0.353, 0.217) | √ | (0.101, 0.160, 0.092) | √ | |
(0.522, 0.473, 0.231) | × | (0.363, 0.356, 0.236) | × | (0.544, 0.521, 0.361) | × | (0.413, 0.375, 0.090) | × |
Table 2
Comparative analysis of pattern recognition"
序号 | 识别样本 | 方法 | d(P, P1) | d(P, P2) | d(P, P3) | 分类结果 |
1 | P1={(0.33, 0.46), (0.83, 0.51), (0.49, 0.6)} P2={(0.55, 0.14), (0.57, 0.69), (0.49, 0.25)} P3={(0.63, 0.17), (0.74, 0.55), (0.67, 0.53)} P={(0.28, 0.92), (0.44, 0.55), (0.22, 0.4)} | 文献[ | 0.828 | 0.676 | 0.889 | P2 |
文献[ | 0.475 | 0.546 | 0.625 | P1 | ||
文献[ | 0.543 | 0.550 | 0.639 | P1 | ||
文献[ | 0.680 | 0.927 | 0.970 | P1 | ||
本文提出方法 | 0.313 | 0.326 | 0.394 | P1 | ||
2 | P1={(0.42, 0.29), (0.42, 0.52), (0.12, 0.26)} P2={(0.14, 0.35), (0.35, 0.27), (0.14, 0.12)} P3={(0.7, 0.32), (0.23, 0.91), (0.81, 0.5)} P={(0.43, 0.65), (0.25, 0.29), (0.61, 0.62)} | 文献[ | 0.687 | 0.629 | 0.750 | P2 |
文献[ | 0.516 | 0.502 | 0.499 | P3 | ||
文献[ | 0.514 | 0.498 | 0.505 | P2 | ||
文献[ | 0.599 | 0.533 | 0.783 | P2 | ||
本文方法 | 0.307 | 0.294 | 0.315 | P2 | ||
3 | P1={(0.71, 0.05), (0.05, 0.85), (0.67, 0.15)} P2={(0.18, 0.12), (0.49, 0.06), (0.45, 0.51)} P3={(0.59, 0.41), (0.3, 0.48), (0.94, 0.28)} P={(0.44, 0.43), (0.74, 0.55), (0.18, 0.97)} | 文献[ | 0.943 | 0.374 | 0.388 | P2 |
文献[ | 0.742 | 0.594 | 0.598 | P2 | ||
文献[ | 0.722 | 0.626 | 0.576 | P3 | ||
文献[ | 1.097 | 0.810 | 0.929 | P2 | ||
本文方法 | 0.476 | 0.374 | 0.388 | P2 | ||
4 | P1={(0.89, 0.1), (0.74, 0.35), (0.34, 0.13)} P2={(0.49, 0.5), (0.2, 0.26), (0.56, 0.39)} P3={(0.14, 0.32), (0.51, 0.69), (0.27, 0.61)} P={(0.72, 0.33), (0.61, 0.58), (0.06, 0.35)} | 文献[ | 0.316 | 0.628 | 0.532 | P1 |
文献[ | 0.418 | 0.549 | 0.443 | P1 | ||
文献[ | 0.384 | 0.528 | 0.421 | P1 | ||
文献[ | 0.803 | 0.742 | 0.602 | P3 | ||
本文方法 | 0.212 | 0.314 | 0.254 | P1 |
1 | ZADEH L A . Fuzzy sets[J]. Information & Control, 1965, 8 (3): 338- 353. |
2 |
ATANASSOV K . Intuitionistic fuzzy sets[J]. Fuzzy Sets and Systems, 1986, 20 (1): 87- 96.
doi: 10.1016/S0165-0114(86)80034-3 |
3 |
陶希闻, 江文奇. 基于调整成本的三阶段区间直觉模糊型多准则群体共识改进模型[J]. 系统工程与电子技术, 2020, 42 (11): 2570- 2580.
doi: 10.3969/j.issn.1001-506X.2020.11.20 |
TAO X W , JIANG W Q . Three-stage consensus improvement model under interval-valued intuitionistic multi-criteria group decision-making environment based on adjustment cost[J]. Systems Engineering and Electronics, 2020, 42 (11): 2570- 2580.
doi: 10.3969/j.issn.1001-506X.2020.11.20 |
|
4 |
江文奇, 降晓璐. 面向属性关联的区间犹豫模糊型PROMETHEE决策方法[J]. 系统工程与电子技术, 2021, 43 (11): 3250- 3258.
doi: 10.12305/j.issn.1001-506X.2021.11.25 |
JIANG W Q , JIANG X L . Interval hesitant fuzzy PROMETHEE decision method for attribute association[J]. Systems Engineering and Electronics, 2021, 43 (11): 3250- 3258.
doi: 10.12305/j.issn.1001-506X.2021.11.25 |
|
5 | TYCAB C . Pythagorean fuzzy linear programming technique for multidimensional analysis of preference using a squared-distance-based approach for multiple criteria decision analysis[J]. Expert Systems with Applications, 2020, 164 (7): 113908. |
6 | SINGH V , KUMAR C . Improving Hamming-distance computation for adaptive similarity search approach[J]. International Journal of Intelligent Information Technologies, 2022, 18 (2): 241- 256. |
7 | HENDIANI S , LEV B , GHAREHBAGHI A . Diagnosing social failures in sustainable supply chains using a modified Pythagorean fuzzy distance to ideal solution[J]. Computers & Industrial Engineering, 2021, 154 (8): 107156. |
8 | ZHANG Z H , XIAO F Y . Complex belief interval-based distance measure with its application in pattern recognition[J]. International Journal of Intelligent, 2022, 37 (1): 6811- 6832. |
9 | WU Q , LIN W H , ZHOU L G , et al. Enhancing multiple attribute group decision making flexibility based on information fusion technique and hesitant Pythagorean fuzzy sets[J]. Compu-ters & Industrial Engineering, 2019, 127 (4): 954- 970. |
10 | ZHOU F , CHEN T Y . An extended Pythagorean fuzzy VIKOR method with risk preference and a novel generalized distance measure for multicriteria decision-making problems[J]. Neural Computing and Applications, 2021, 33 (2): 11821- 11844. |
11 | DUTTA P . A sophisticated similarity measure for picture fuzzy sets and their application[J]. Applied Soft Computing: Techniques and Applications, 2022, 21 (6): 89- 103. |
12 | VIJAYABALAJI S , RAMESH A , BALAJI P . A new distance and similarity measure on soft parameter sets and their applications to MCDM problem[J]. Fuzzy Mathematical Analysis and Advances in Computational Mathematics, 2022, 419 (7): 127- 136. |
13 | HENDIANI S , LEV B , GHAREHBAGHI A . Diagnosing social failures in sustainable supply chains using a modified Pythagorean fuzzy distance to ideal solution[J]. Computers & Industrial Engineering, 2021, 154 (2): 107156. |
14 | SHARMA D K , SINGH S , GANIE A H . Distance-based knowledge measure of hesitant fuzzy linguistic term set with its application in multi-criteria decision making[J]. International Journal of Fuzzy System Applications, 2022, 11 (1): 139- 158. |
15 |
WANG F , ZHAO X D . Prospect-theory and geometric distance measure-based Pythagorean cubic fuzzy multicriteria decision-making[J]. International Journal of Intelligent Systems, 2021, 36 (8): 4117- 4142.
doi: 10.1002/int.22453 |
16 |
ZHOU F , CHEN T Y . An extended Pythagorean fuzzy VIKOR method with risk preference and a novel generalized distance mea-sure for multicriteria decision-making problems[J]. Neural Computing and Applications, 2021, 33 (18): 11821- 11844.
doi: 10.1007/s00521-021-05829-7 |
17 |
DENG Z , WANG J Y . New distance measure for Fermatean fuzzy sets and its application[J]. International Journal of Intelligent Systems, 2022, 37 (3): 1903- 1930.
doi: 10.1002/int.22760 |
18 |
WANG S , STAVROU P A , SKOGLUND M . Generalizations of talagrand inequality for sinkhorn distance using entropy power inequality[J]. Entropy, 2022, 24 (2): 306- 325.
doi: 10.3390/e24020306 |
19 |
SARKAR B , BISWAS A . Pythagorean fuzzy AHP-TOPSIS integrated approach for transportation management through a new distance measure[J]. Soft Computing, 2021, 25 (5): 4073- 4089.
doi: 10.1007/s00500-020-05433-2 |
20 | CHEN S M , CHANG C H . A novel similarity measure between Atanassov's intuitionistic fuzzy sets based on transformation techniques with applications to pattern recognition[J]. Information Sciences, 2015, 291 (10): 96- 114. |
21 |
GOHAIN B , CHUTIA R , DUTTA P , et al. Two new similarity measures for intuitionistic fuzzy sets and its various applications[J]. International Journal of Intelligent Systems, 2022, 37 (9): 5557- 5596.
doi: 10.1002/int.22802 |
22 | BORAN F E , AKAY D . A biparametric similarity measure on intuitionistic fuzzy sets with applications to pattern recognition[J]. Information Sciences, 2014, 255 (9): 45- 57. |
23 | JIANG Q A , JIN X B . A new similarity/distance measure between intuitionistic fuzzy sets based on the transformed isosceles triangles and its applications to pattern recognition[J]. Expert Systems with Applications, 2019, 116 (6): 439- 453. |
24 | GARG H , RANI D . Novel distance measures for intuitionistic fuzzy sets based on various triangle centers of isosceles triangular fuzzy numbers and their applications[J]. Expert Systems with Applications, 2022, 191 (6): 116228. |
25 | 陶希闻, 江文奇. 面向群体共识的三阶段犹豫模糊型信息融合方法研究[J]. 系统工程与电子技术, 2021, 43 (12): 3603- 3613. |
TAO X W , JIANG W Q . Research on three-stage hesitant fuzzy information fusion method for group consensus[J]. Systems Engineering and Electronics, 2021, 43 (12): 3603- 3613. | |
26 |
YAGER R R , ABBASOV A M . Pythagorean membership grades, complex numbers, and decision making[J]. International Journal of Intelligent Systems, 2013, 28 (5): 436- 452.
doi: 10.1002/int.21584 |
27 | SARKAR B , BISWAS A . Linguistic Einstein aggregation operator-based TOPSIS for multicriteria group decision making in linguistic Pythagorean fuzzy environment[J]. International Journal of Intelligent Systems, 2021, 36 (13): 2825- 2864. |
28 | BVYVKÖZKAN G , GÖÇER F , UZTVRK D . A novel pythagorean fuzzy set integrated choquet integral approach for vertical farming technology assessment[J]. Computers & Industrial Engineering, 2021, 158 (6): 107384. |
29 | 陈六新, 罗南方. 基于前景理论的勾股模糊多属性决策[J]. 系统工程理论与实践, 2020, 40 (3): 726- 735. |
CHEN L X , LUO N F . Pythagorean fuzzy multi-criteria decision-making based on prospect theory[J]. System Engineering-Theory & Practice, 2020, 40 (3): 726- 735. | |
30 | WAN S P , JIN Z . Pythagorean fuzzy mathematical programming method for multi-attribute group decision making with Pythagorean fuzzy truth degrees[J]. Knowledge & Information Systems, 2018, 55 (2): 437- 466. |
31 |
LI D Q , ZENG W Y . Distance measure of pythagorean fuzzy sets[J]. International Journal of Intelligent Systems, 2018, 33 (2): 348- 361.
doi: 10.1002/int.21934 |
32 |
ZENG W Y , LI D Q , YIN Q . Distance and similarity measures of Pythagorean fuzzy sets and their applications to multiple criteria group decision making[J]. International Journal of Intelligent Systems, 2018, 33 (11): 2236- 2254.
doi: 10.1002/int.22027 |
33 | ZHOU F , CHEN T Y . Multiple criteria group decision analysis using a Pythagorean fuzzy programming model for multidimensional analysis of preference based on novel distance measures[J]. Computers & Industrial Engineering, 2020, 148 (8): 106670. |
34 | ZHANG X L . Multicriteria pythagorean fuzzy decision analysis: a hierarchical qualiflex approach with the closeness index-based ranking methods[J]. Information Sciences, 2016, 330 (7): 104- 124. |
35 | YAGER R R . Pythagorean membership grades in multicriteria decision making[J]. IEEE Trans.on Fuzzy System, 2014, 22 (11): 958- 965. |
36 | WAN S P , JIN Z , DONG J Y . A new order relation for Pythagorean fuzzy numbers and application to multi-attribute group decision making[J]. Knowledge and Information Systems, 2020, 62 (2): 751- 785. |
37 | VLACHOS I K , SERGIADIS G D . Intuitionistic fuzzy information-application to pattern recognition[J]. Pattern Recognition Letters, 2007, 28 (9): 197- 206. |
[1] | Dongxia LI, Qiuyu CHEN, Lei WANG, Haitao LIU. DME pulse interference suppression method based on BSBL-BO algorithm [J]. Systems Engineering and Electronics, 2021, 43(9): 2649-2656. |
[2] | Haitao LIU, Guangxue LI, Haixia SUN, Lei WANG. L-DACS1 system interference suppression and cyclic adaptive beamforming method [J]. Systems Engineering and Electronics, 2020, 42(8): 1850-1856. |
[3] | WANG Rugen, LI Weimin, LUO Xiao, LYU Chengzhong. Extended VIKOR method of multi-attribute decision making under intuitionistic fuzzy environment based on a new distance measure [J]. Systems Engineering and Electronics, 2019, 41(11): 2524-2532. |
[4] | ZHU Ziyao, HAN Shuping, GUO Zhengdong, SUN Rongguang, SHU Xianglan, DONG Yongfeng. Long baseline location algorithm based on beacon drift error recognition [J]. Systems Engineering and Electronics, 2019, 41(1): 162-169. |
[5] | GONG Xiaomin, YU Changrui. Improved TODIM approach for alternative evaluation based on cloud model [J]. Systems Engineering and Electronics, 2018, 40(7): 1539-1547. |
[6] | LI Dong-xia, LI Si, LIU Hai-tao. Cyclostationarity of carrier offset distance measure equipment signals [J]. Systems Engineering and Electronics, 2016, 38(8): 1935-1938. |
[7] | LI Dong-xia, CUI Yan-min, LIU Hai-tao, LI Si. Distance measure equipment impulse interference mitigation method based on JADE [J]. Systems Engineering and Electronics, 2016, 38(2): 423-427. |
[8] | HAN Lu-jie,CUI Shao-hui. Method of miss distance measurement using data of seeker [J]. Systems Engineering and Electronics, 2014, 36(4): 734-739. |
[9] | LIU Heng, MEI Wei, SHAN Gan-lin. Analysis on performance of three interval estimation methods for small samples [J]. Systems Engineering and Electronics, 2014, 36(10): 1929-1933. |
[10] | QU Quan-you, GUO Kun-yi, MU Hai-jian, SHENG Xin-qing. Miss distance measurement based on stable scattering centers of extended targets [J]. Journal of Systems Engineering and Electronics, 2013, 35(4): 692-699. |
[11] | SU Zhi-gang, LI Zhi-bo, WU Ren-biao. DME selection algorithm for implementation of PBN technology [J]. Systems Engineering and Electronics, 2013, 35(10): 2170-2175. |
[12] | SHEN Xiao-yong, LEI Ying-jie, CAI Ru, ZHANG Chi. Method for dissimilarity measure among intuitionistic fuzzy sets based on weighted Minkowski distance [J]. Journal of Systems Engineering and Electronics, 2009, 31(6): 1358-1361. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||