Systems Engineering and Electronics ›› 2023, Vol. 45 ›› Issue (1): 155-164.doi: 10.12305/j.issn.1001-506X.2023.01.19
• Systems Engineering • Previous Articles
Jianhao WANG1, Long WANG2,*, Liang ZHANG1, Lijie CUI1
Received:
2021-02-24
Online:
2023-01-01
Published:
2023-01-03
Contact:
Long WANG
CLC Number:
Jianhao WANG, Long WANG, Liang ZHANG, Lijie CUI. Supplier selection VIKOR multi-attribute decision making of grey group clustering and improved CRITIC weighting[J]. Systems Engineering and Electronics, 2023, 45(1): 155-164.
Table 2
Indicator information of weapon equipment supplier selection"
一级指标 | 二级指标 | Y1 | Y2 | Y3 | Y4 | 类型 |
发展创新能力 | 科研费用率/% | 10 | 12 | 8 | 5 | 效益型 |
新技术创新投入比率/% | 15 | 20 | 10 | 25 | 效益型 | |
新型装备开发成功率/% | 95 | 70 | 80 | 90 | 效益型 | |
供应商绩效 | 单价/万 | 550 | 530 | 490 | 510 | 成本型 |
合格率/% | 98 | 97 | 99 | 99 | 效益型 | |
交货准确率/% | 99 | 98 | 96 | 99 | 效益型 | |
数量柔性 | 21 | 35 | 30 | 20 | 效益型 | |
时间柔性 | 0.3 | 0.22 | 0.15 | 0.2 | 效益型 | |
供应稳定性及安全性 | 零配件可替代程度 | 80 | 90 | 95 | 100 | 效益型 |
核心技术外购比率/% | 20 | 15 | 30 | 5 | 成本型 | |
供应商性质 | 5 | 5 | 3 | 5 | 效益型 |
Table 5
Influence of compromise coefficient μ on the sorting result of alternative supplier"
μ | Q(Y1) | Q(Y2) | Q(Y3) | Q(Y4) | 方案排序 | 折衷方案 |
0.0 | 0.644 3 | 0.000 0 | 0.210 3 | 1.000 0 | Y2≻Y3≻Y1≻Y4 | Y2/Y3 |
0.1 | 0.642 5 | 0.038 2 | 0.289 3 | 0.900 0 | Y2≻Y3≻Y1≻Y4 | Y2/Y3 |
0.2 | 0.640 8 | 0.076 5 | 0.368 2 | 0.800 0 | Y2≻Y3≻Y1≻Y4 | Y2/Y3 |
0.3 | 0.639 0 | 0.114 7 | 0.447 2 | 0.700 0 | Y2≻Y3≻Y1≻Y4 | Y2/Y3 |
0.4 | 0.637 2 | 0.152 9 | 0.526 2 | 0.600 0 | Y2≻Y3≻Y1≻Y4 | Y2 |
0.5 | 0.635 5 | 0.191 2 | 0.605 1 | 0.500 0 | Y2≻Y4≻Y3≻Y1 | Y2/Y4 |
0.6 | 0.633 7 | 0.229 4 | 0.684 1 | 0.400 0 | Y2≻Y4≻Y1≻Y3 | Y2/Y4 |
0.7 | 0.632 0 | 0.267 6 | 0.763 1 | 0.300 0 | Y2≻Y4≻Y1≻Y3 | Y2/Y4 |
0.8 | 0.630 2 | 0.305 9 | 0.842 1 | 0.200 0 | Y4≻Y2≻Y1≻Y3 | Y2/Y4 |
0.9 | 0.628 4 | 0.344 1 | 0.921 0 | 0.100 0 | Y4≻Y2≻Y1≻Y3 | Y2/Y4 |
1.0 | 0.626 7 | 0.382 3 | 1.000 0 | 0.000 0 | Y4≻Y2≻Y1≻Y3 | Y4 |
Table 6
Influence of sorting method on the sorting result of alternative supplier"
备选供应商 | VIKOR(μ=0.0) | VIKOR(μ=0.5) | VIKOR(μ=1.0) | TOPSIS | 改进TOPSIS | |||||||||
折衷值 | 排序结果 | 折衷值 | 排序结果 | 折衷值 | 排序结果 | 贴近度 | 排序结果 | 相对贴近度 | 排序结果 | |||||
Y1 | 0.644 3 | 3 | 0.635 5 | 4 | 0.626 7 | 3 | 0.538 7 | 2 | 0.011 0 | 2 | ||||
Y2 | 0.000 0 | 1 | 0.191 2 | 1 | 0.382 3 | 2 | 0.555 1 | 1 | 0.000 0 | 1 | ||||
Y3 | 0.210 3 | 2 | 0.605 1 | 3 | 1.000 0 | 4 | 0.467 4 | 4 | 0.047 7 | 4 | ||||
Y4 | 1.000 0 | 4 | 0.500 0 | 2 | 0.000 0 | 1 | 0.496 9 | 3 | 0.040 0 | 3 |
Table 8
Influence of compromise coefficient μ on the sorting result of alternative supplier of GGC-CRITIC combination weighting approach"
μ | Q(Y1) | Q(Y2) | Q(Y3) | Q(Y4) | 方案排序 | 折衷方案 |
0.0 | 0.796 9 | 0.511 8 | 0.000 0 | 1.000 0 | Y3≻Y2≻Y1≻Y4 | Y3 |
0.1 | 0.779 6 | 0.501 6 | 0.100 0 | 0.900 0 | Y3≻Y2≻Y1≻Y4 | Y3 |
0.2 | 0.762 3 | 0.491 4 | 0.200 0 | 0.800 0 | Y3≻Y2≻Y1≻Y4 | Y2/Y3 |
0.3 | 0.745 0 | 0.481 2 | 0.300 0 | 0.700 0 | Y3≻Y2≻Y4≻Y1 | Y2/Y3 |
0.4 | 0.727 7 | 0.471 1 | 0.400 0 | 0.600 0 | Y3≻Y2≻Y4≻Y1 | Y1/Y2/Y3/Y4 |
0.5 | 0.710 4 | 0.460 9 | 0.500 0 | 0.500 0 | - | |
0.6 | 0.693 0 | 0.450 7 | 0.600 0 | 0.400 0 | Y4≻Y2≻Y3≻Y1 | Y1/Y2/Y3/Y4 |
0.7 | 0.675 7 | 0.440 5 | 0.700 0 | 0.300 0 | Y4≻Y2≻Y1≻Y3 | Y2/Y4 |
0.8 | 0.658 4 | 0.430 3 | 0.800 0 | 0.200 0 | Y4≻Y2≻Y1≻Y3 | Y2/Y4 |
0.9 | 0.641 1 | 0.420 1 | 0.900 0 | 0.100 0 | Y4≻Y2≻Y1≻Y3 | Y2/Y4 |
1.0 | 0.623 8 | 0.410 0 | 1.000 0 | 0.000 0 | Y4≻Y2≻Y1≻Y3 | Y4 |
1 | 李力, 陈宏, 王进发. 基于模糊层次分析法的军品供应商选择体系研究[J]. 管理学报, 2007, 4 (1): 40- 47. |
LI L , CHEN H , WANG J F . The research on military products supplier selection architecture based on supply chain[J]. Chinese Journal of Management, 2007, 4 (1): 40- 47. | |
2 | 李海林, 姜俊. 基于二元语意一致性的军品供应商绩效模糊评价方法[J]. 系统工程理论与实践, 2012, 32 (2): 373- 379. |
LI H L , JIANG J . A fuzzy measuring method based on 2-tuple linguistic consistency for supply performance of military product suppliers[J]. Systems Engineering-Theory & Practice, 2012, 32 (2): 373- 379. | |
3 | 张亮, 王坚浩, 郑东良, 等. 基于直觉模糊熵和VIKOR的装备器材供应商选优决策[J]. 系统工程与电子技术, 2019, 41 (7): 1568- 1575. |
ZHANG L , WANG J H , ZHENG D L , et al. Equipment material supplier selection decision-making based on intuitionistic fuzzy entropy and VIKOR[J]. Systems Engineering and Electronics, 2019, 41 (7): 1568- 1575. | |
4 | 温斌. 精确式装备动员优化研究[D]. 北京: 中国人民解放军装备学院, 2011. |
WEN B. Investigation of optimization for accurate equipment mobilization[D]. Beijing: Equipment Academy of PLA, 2011. | |
5 |
SAATY T L . A scaling method for priorities in hierarchical structures[J]. Journal of Mathematical Psychology, 1977, 15 (3): 234- 281.
doi: 10.1016/0022-2496(77)90033-5 |
6 | 杨雷, 朱彦绮, 廖国江. 字典序偏好的军用物资供应商选择方法[J]. 系统工程与电子技术, 2015, 37 (4): 825- 831. |
YANG L , ZHU Y Q , LIAO G J . Method based on lexicographic preferences to select military material suppliers[J]. Systems Engineering and Electronics, 2015, 37 (4): 825- 831. | |
7 | 林原, 战仁军, 吴虎胜. 基于犹豫度和相似度的专家权重确定方法及其应用[J]. 控制与决策, 2021, 36 (6): 1482- 1488. |
LIN Y , ZHAN R J , WU H S . Expert weights determination method and application based on hesitancy degree and similarity measure[J]. Control and Decision, 2021, 36 (6): 1482- 1488. | |
8 | 林原, 战仁军, 吴虎胜. 基于混合改进TOPSIS的装备供应商选择方法[J]. 工业工程与管理, 2021, 1 (2): 75- 82. |
LIN Y , ZHAN R J , WU H S . Research on equipment supplier selection method based on mixed information and improved TOPSIS[J]. Industrial Engineering and Management, 2021, 1 (2): 75- 82. | |
9 | HWANG C L , YOON K P . Multiple attribute decision making: methods and applications. A State-of-the-Art Survey[[M]. Berlin: Springer-Verlag, 1981. |
10 |
TANG H M , SHI Y , DONG P W . Public blockchain evaluation using entropy and TOPSIS[J]. Expert Systems with Applications, 2019, 117, 204- 210.
doi: 10.1016/j.eswa.2018.09.048 |
11 | BRUNO M S , LEONI P G , LUCILA M C . Performance evaluation of green suppliers using entropy-TOPSIS-F[J]. Journal of Cleaner Production, 2019, 207, 498- 509. |
12 | ZHENG P , LIU J , HAO F , et al. FLM-TOPSIS: the fuzzy linguistic multiset TOPSIS method and its application in linguistic decision making[J]. Information Fusion, 2019, 45, 266- 281. |
13 | DARIUSZ K . A doubly extended TOPSIS method for group decision making based on ordered fuzzy numbers[J]. Expert Systems with Applications, 2019, 116, 243- 254. |
14 | WU Z B , XU J P , JIANG X L , et al. Two MAGDM models based on hesitant fuzzy linguistic term sets with possibility distributions: VIKOR and TOPSIS[J]. Information Sciences, 2019, 473, 101- 120. |
15 | STEPHEN N L . Risk assessment techniques[J]. Quality Engineering, 2014, 26 (3): 379- 382. |
16 | 安进, 徐廷学, 曾翔, 等. 组合赋权下的装备质量状态信息融合评估方法[J]. 控制与决策, 2018, 33 (9): 1693- 1698. |
AN J , XU T X , ZENG X , et al. Equipment quality condition assessment under fusion information based on combination weighting[J]. Control and Decision, 2018, 33 (9): 1693- 1698. | |
17 | 罗绍伟. 黄金分割标度法在高校图书馆读者满意度定量评价中的应用[J]. 图书情报工作, 2009, 53 (15): 54- 57. |
LUO S W . Application of the golden section scaling to the quantitative assessment of the reader's satisfaction degree in the academic libraries[J]. Library and Information Service, 2009, 53 (15): 54- 57. | |
18 | 王坚浩, 张亮, 史超, 等. 基于重要度评估和IMPGA的航空保障装备型谱规划[J]. 系统工程与电子技术, 2018, 40 (11): 2498- 2504. |
WANG J H , ZHANG L , SHI C , et al. Aviation support equipment portfolio scheduling based on importance assessment and IMPGA[J]. Systems Engineering and Electronics, 2018, 40 (11): 2498- 2504. | |
19 | DIAKOULAKI D , MAVROTAS G , PAPAYANNAKIS L . Determining objective weights in multiple criteria problems, the critic method[J]. Computers & Operations Research, 1995, 22 (7): 763- 770. |
20 | 胡涛, 王栋, 孙曜, 等. 基于改进CRITIC-LRA和灰色逼近理想解排序法的空战威胁评估[J]. 兵工学报, 2020, 41 (12): 2561- 2569. |
HU T , WANG D , SUN Y , et al. Air combat threat assessment of improved CRITIC-LRA and grey TOPSIS[J]. Acta Armamentarii, 2020, 41 (12): 2561- 2569. | |
21 | FAN W L , HU P , LIU Z G . A multi-attribute node importance evaluation method based on Gni-cofficient in complex power grids[J]. IET Generation, Transmission & Distribution, 2016, 10 (9): 2027- 2034. |
22 | 王正位. 基于组合赋权的水利工程工期风险灰色综合评价[D]. 大连: 大连理工大学, 2019. |
WANG Z W. Grey comprehensive evaluation of water conservancy project duration risk based on combination weighting[D]. Dalian: Dalian University of Technology, 2019. | |
23 | YANG W G , WU Y J . A new improvement method to avoid rank reversal in VIKOR[J]. IEEE Access, 2020, 8, 21261- 21271. |
24 | SOPHAN M K, MABAHIST F, SIRADJUDDIN I A. A combination of social media and geospatial data for waste mapping using fuzzy AHP and VIKOR[C]//Proc. of the International Conference on Computer Engineering, Network, and Intelligent Multimedia, 2020: 222-228. |
25 | ALMULHIM T S , BARAHONA I . An integrated approach for fuzzy-dynamic multi-attribute group decision making with application in renewable energy[J]. IEEE Access, 2020, 8, 145092- 145106. |
26 | 殷春武. 无人飞行器航迹方案的VIKOR择优评价[J]. 控制与决策, 2020, 35 (12): 2950- 2958. |
YIN C W . Unmanned aerial vehicle path scheme optimal evaluation based-VIKOR[J]. Control and Decision, 2020, 35 (12): 2950- 2958. | |
27 | YANG W , PANG Y F , SHI J R , et al. Linguistic hesitant intuitionistic fuzzy decision-making method based on VIKOR[J]. Neural Computing and Applications, 2018, 29 (7): 613- 626. |
28 | ARMIN C , MOHAMMAD M P , MOSTAFA H K . Applying a hybrid BWM-VIKOR approach to supplier selection: a case study in the Iranian agricultural implements industry[J]. International Journal of Applied Decision Sciences, 2018, 11 (3): 274- 301. |
29 | LIU K , LIU Y W , QIN J D . An integrated ANP-VIKOR methodology for sustainable supplier selection with interval type-2 fuzzy sets[J]. Granular Computing, 2018, 3 (3): 193- 208. |
30 | LIU J , LIANG Y Y . Multi-granularity unbalanced linguistic group decision-making with incomplete weight information based on VIKOR method[J]. Granular Computing, 2018, 3 (3): 219- 228. |
31 | FENG Y X , HONG Z X , TIAN G D , et al. Environmentally friendly MCDM of reliability-based product optimisation combining DEMATEL-based ANP, interval uncertainty and Vlse Kriterijumska Optimizacija Kompromisno Resenje (VIKOR)[J]. Information Sciences, 2018, 442/443, 128- 144. |
[1] | Dongliang YIN, Guoheng CUI, Xiaoying HUANG, Huan ZHANG. Interval-valued Pythagorean fuzzy multi-attribute decision-making based on improved score function and prospect theory [J]. Systems Engineering and Electronics, 2022, 44(11): 3463-3469. |
[2] | Chong JIN, Juan SUN, Yongjia WANG, Pushen CAI, Xin RONG. Threat comprehensive assessment for air defense targets based on intuitionistic fuzzy TOPSIS and variable weight VIKOR [J]. Systems Engineering and Electronics, 2022, 44(1): 172-180. |
[3] | Yan LI, Yunxiang CHEN, Chengkun LUO, Zhongyi CAI. Multi-attribute decision making method based on probabilistic hesitant-intuitionistic fuzzy entropy and evidential reasoning [J]. Systems Engineering and Electronics, 2020, 42(5): 1116-1123. |
[4] | ZHANG Liang, WANG Jianhao, Zheng Dongliang, CHE Fei, SHI Chao, MAO Hongbao. Equipment material supplier selection decision making based on intuitionistic fuzzy entropy and VIKOR [J]. Systems Engineering and Electronics, 2019, 41(7): 1568-1575. |
[5] | WANG Rugen, LI Weimin, LUO Xiao, LYU Chengzhong. Extended VIKOR method of multi-attribute decision making under intuitionistic fuzzy environment based on a new distance measure [J]. Systems Engineering and Electronics, 2019, 41(11): 2524-2532. |
[6] | GONG Xiaomin, YU Changrui. Improved TODIM approach for alternative evaluation based on cloud model [J]. Systems Engineering and Electronics, 2018, 40(7): 1539-1547. |
[7] | LI Wei-wei, YI Ping-tao, GUO Ya-jun, JING Yuan-wei. Synthetic integration of generalized hybrid decision information under simulation aspect [J]. Systems Engineering and Electronics, 2016, 38(6): 1339-1344. |
[8] | HUANG Zhi-li, LUO Jian. Similarity programming model for triangular fuzzy number-based uncertain multi-attribute decision making and its application [J]. Systems Engineering and Electronics, 2016, 38(5): 1100-. |
[9] | YANG Lei, ZHU Yan-qi, LIAO Guo-jiang. Method based on lexicographic preferences to select military material suppliers [J]. Systems Engineering and Electronics, 2015, 37(4): 825-831. |
[10] | CHEN Zhen-song, XIONG Sheng-hua, LI Yan-lai, QIAN Gui-sheng. Approach for intuitionistic trapezoidal fuzzy random prospect decision making based on the combination of parameter estimation and score functions [J]. Systems Engineering and Electronics, 2015, 37(4): 851-862. |
[11] | ZHANG Ru-bo,ZOU Qi-jie,YANG Ge,SU Hang. Adaptive autonomy control structure and algorithm for USV under uncertainty [J]. Systems Engineering and Electronics, 2014, 36(1): 128-135. |
[12] | CHANG Zhi-peng, CHENG Long-sheng. Fuzzy integral multiattribute decision making method based on Mahalanobis-Taguchi system and φs transformation [J]. Journal of Systems Engineering and Electronics, 2013, 35(8): 1702-1710. |
[13] |
LI Wu1, YUE Chao-yuan2, RAO Cong-jun2.
Minimizing ordinal preferences’ distance to multi-attribute group decisionmaking [J]. Journal of Systems Engineering and Electronics, 2010, 32(2): 303-307. |
[14] | LIU Yu-peng, LI Yi-jun. Decision model for partner selection based on preference information of decision-makers [J]. Journal of Systems Engineering and Electronics, 2009, 31(3): 602-605,732. |
[15] | SI Yan-jie, WEI Fa-jie. Hybrid multi-attribute decision making based on the intuitionistic fuzzy optimum selecting model [J]. Journal of Systems Engineering and Electronics, 2009, 31(12): 2893-2897. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||