Systems Engineering and Electronics ›› 2022, Vol. 44 ›› Issue (9): 2986-2994.doi: 10.12305/j.issn.1001-506X.2022.09.35
• Reliability • Previous Articles
Yaohua LI1, Yuan GAO2,*
Received:2021-10-22
Online:2022-09-01
Published:2022-09-09
Contact:
Yuan GAO
CLC Number:
Yaohua LI, Yuan GAO. Safety analysis for civil aircraft system based on STPA-ANP model[J]. Systems Engineering and Electronics, 2022, 44(9): 2986-2994.
Table 5
Original judgment matrix for potential causal factors of U-1"
| 致因因素 | A1 | A2 | A3 | A4 | A5 | A6 | B1 | B2 | B3 | B4 | C1 | C2 | C3 |
| A1 | 1 | 4 | 3 | 2 | 3 | 2 | 2 | 3 | 3 | 2 | 2 | 2 | 4 |
| A2 | 1 | 3 | 2 | 3 | 2 | 5 | 3 | 3 | 2 | 2 | 1/3 | 3 | |
| A3 | 1 | 1/2 | 2 | 1/2 | 1/2 | 2 | 3 | 1/3 | 1/4 | 1/3 | 2 | ||
| A4 | 1 | 1/2 | 2 | 1/2 | 1/2 | 2 | 1/4 | 1/3 | 1/3 | 2 | |||
| A5 | 1 | 2 | 1/3 | 1/2 | 2 | 1/4 | 1/2 | 1/3 | 3 | ||||
| A6 | 1 | 1/3 | 1/2 | 1/2 | 1/3 | 1/5 | 1/4 | 2 | |||||
| B1 | 1 | 2 | 3 | 1/2 | 2 | 1/3 | 2 | ||||||
| B2 | 1 | 2 | 1/3 | 1/3 | 1/3 | 2 | |||||||
| B3 | 1 | 1/5 | 1/4 | 1/4 | 2 | ||||||||
| B4 | 1 | 1/2 | 1/3 | 3 | |||||||||
| C1 | 1 | 1/2 | 4 | ||||||||||
| C2 | 1 | 2 | |||||||||||
| C3 | 1 |
Table 6
Limit matrix for quantitative analysis of causal factors"
| 致因因素 | A1 | A2 | A3 | A4 | A5 | A6 | B1 | B2 | B3 | B4 | C1 | C2 | C3 |
| A1 | 0.146 2 | 0.146 2 | 0.146 2 | 0.146 2 | 0.146 2 | 0.146 2 | 0.146 2 | 0.146 2 | 0.146 2 | 0.146 2 | 0.146 2 | 0.146 2 | 0.146 2 |
| A2 | 0.119 4 | 0.119 4 | 0.119 4 | 0.119 4 | 0.119 4 | 0.119 4 | 0.119 4 | 0.119 4 | 0.119 4 | 0.119 4 | 0.119 4 | 0.119 4 | 0.119 4 |
| A3 | 0.048 9 | 0.048 9 | 0.048 9 | 0.048 9 | 0.048 9 | 0.048 9 | 0.048 9 | 0.048 9 | 0.048 9 | 0.048 9 | 0.048 9 | 0.048 9 | 0.048 9 |
| A4 | 0.048 6 | 0.048 6 | 0.048 6 | 0.048 6 | 0.048 6 | 0.048 6 | 0.048 6 | 0.048 6 | 0.048 6 | 0.048 6 | 0.048 6 | 0.048 6 | 0.048 6 |
| A5 | 0.047 6 | 0.047 6 | 0.047 6 | 0.047 6 | 0.047 6 | 0.047 6 | 0.047 6 | 0.047 6 | 0.047 6 | 0.047 6 | 0.047 6 | 0.047 6 | 0.047 6 |
| A6 | 0.038 8 | 0.038 8 | 0.038 8 | 0.038 8 | 0.038 8 | 0.038 8 | 0.038 8 | 0.038 8 | 0.038 8 | 0.038 8 | 0.038 8 | 0.038 8 | 0.038 8 |
| B1 | 0.080 4 | 0.080 4 | 0.080 4 | 0.080 4 | 0.080 4 | 0.080 4 | 0.080 4 | 0.080 4 | 0.080 4 | 0.080 4 | 0.080 4 | 0.080 4 | 0.080 4 |
| B2 | 0.051 1 | 0.051 1 | 0.051 1 | 0.051 1 | 0.051 1 | 0.051 1 | 0.051 1 | 0.051 1 | 0.051 1 | 0.051 1 | 0.051 1 | 0.051 1 | 0.051 1 |
| B3 | 0.033 2 | 0.033 2 | 0.033 2 | 0.033 2 | 0.033 2 | 0.033 2 | 0.033 2 | 0.033 2 | 0.033 2 | 0.033 2 | 0.033 2 | 0.033 2 | 0.033 2 |
| B4 | 0.104 7 | 0.104 7 | 0.104 7 | 0.104 7 | 0.104 7 | 0.104 7 | 0.104 7 | 0.104 7 | 0.104 7 | 0.104 7 | 0.104 7 | 0.104 7 | 0.104 7 |
| C1 | 0.107 8 | 0.107 8 | 0.107 8 | 0.107 8 | 0.107 8 | 0.107 8 | 0.107 8 | 0.107 8 | 0.107 8 | 0.107 8 | 0.107 8 | 0.107 8 | 0.107 8 |
| C2 | 0.143 9 | 0.143 9 | 0.143 9 | 0.143 9 | 0.143 9 | 0.143 9 | 0.143 9 | 0.143 9 | 0.143 9 | 0.143 9 | 0.143 9 | 0.143 9 | 0.143 9 |
| C3 | 0.029 5 | 0.029 5 | 0.029 5 | 0.029 5 | 0.029 5 | 0.029 5 | 0.029 5 | 0.029 5 | 0.029 5 | 0.029 5 | 0.029 5 | 0.029 5 | 0.029 5 |
Table 7
Resulis of quantitative analysis of causal factors"
| 编号 | 致因因素 | 权重 | 排序 |
| 1 | FCC物理故障 | 0.146 2 | 1 |
| 2 | FCC控制算法缺陷 | 0.119 4 | 3 |
| 3 | 驾驶员控制指令缺失 | 0.048 9 | 8 |
| 4 | 驾驶员向FCC传输指令错误 | 0.048 6 | 9 |
| 5 | A/P控制指令缺失 | 0.047 6 | 10 |
| 6 | A/P向FCC传输指令错误 | 0.038 8 | 11 |
| 7 | 传感器物理故障 | 0.080 4 | 6 |
| 8 | 传感器数据丢失 | 0.051 1 | 7 |
| 9 | 接收到不完整的传感器数据 | 0.033 2 | 12 |
| 10 | 传感器数据错误 | 0.104 7 | 5 |
| 11 | 作动系统物理故障 | 0.107 8 | 4 |
| 12 | FCC控制指令缺失 | 0.143 9 | 2 |
| 13 | FCC向作动系统传输指令错误 | 0.146 2 | 13 |
| 1 | KHAKZAD N , KHAN F , AMYOTTE P . Safety analysis in process facilities: comparison of fault tree and Bayesian network approaches[J]. Reliability Engineering & System Safety, 2011, 96 (8): 925- 932. |
| 2 |
CARMAN A L , VANDERPOOL R C , STRADTMAN L R , et al. Standardizing a federally qualified health center's preventive care processes: use of failure modes and effects analysis[J]. Health Care Management Review, 2020, 45 (3): 228- 231.
doi: 10.1097/HMR.0000000000000189 |
| 3 |
ZHENG Y , ZHAO F , WANG Z . Fault diagnosis system of bridge crane equipment based on fault tree and Bayesian network[J]. The International Journal of Advanced Manufacturing Technology, 2019, 105 (9): 3605- 3618.
doi: 10.1007/s00170-019-03793-0 |
| 4 |
OUYANG L H . An interval probability-based FMEA model for risk assessment: a real-world case[J]. Quality and Reliability Engineering and International, 2020, 36 (1): 125- 134.
doi: 10.1002/qre.2563 |
| 5 | LEVESON N . Engineering a safer world: systems thinking applied to safety[M]. Massachusett: MIT Press, 2012: 171- 249. |
| 6 |
CASTILHO D S , URBINA L , DE A D . STPA for continuous controls: a flight testing study of aircraft crosswind takeoffs[J]. Safety Science, 2018, 108, 129- 139.
doi: 10.1016/j.ssci.2018.04.013 |
| 7 |
CRAIG K , ALLISO N . Systems theoretic accident model and process (STAMP) safety modelling applied to an aircraft rapid decompression event[J]. Safety Science, 2017, 98, 159- 166.
doi: 10.1016/j.ssci.2017.06.011 |
| 8 |
SILVIS-CIVIDJIAN N , VERBAKEL W , ADMIRAAL M . Using a systems-theoretic approach to analyze safety in radiation therapy-first steps and lessons learned[J]. Safety Science, 2020, 122, 104519.
doi: 10.1016/j.ssci.2019.104519 |
| 9 | MAHAJAN H S , BRADLEY T , PASRICHA S . Application of systems theoretic process analysis to a lane keeping assist system[J]. Reliability Engineering & System Safety, 2017, 167, 177- 183. |
| 10 |
CHAAL M . A framework to model the STPA hierarchical control structure of an autonomous ship[J]. Safety Science, 2020, 132, 104939.
doi: 10.1016/j.ssci.2020.104939 |
| 11 |
LUNDE A , NJA O . A systems thinking approach to safety in Norwegian avalanche rescue operations[J]. Safety Science, 2021, 144, 105466.
doi: 10.1016/j.ssci.2021.105466 |
| 12 |
CHEN L , JIAO J , ZHAO T D . A novel hazard analysis and risk assessment approach for road vehicle functional safety through integrating STPA with FMEA[J]. Applied Sciences, 2020, 10 (21): 7400.
doi: 10.3390/app10217400 |
| 13 |
BENSACI C . STPA and Bowtie risk analysis study for centralized and hierarchical control architectures comparison[J]. Alexandria Engineering Journal, 2020, 59 (5): 3799- 3816.
doi: 10.1016/j.aej.2020.06.036 |
| 14 | 赵长啸, 李浩, 董磊, 等. 基于STPA-Bayes模型的机载平视显示系统安全性分析与评价[J]. 系统工程与电子技术, 2020, 42 (5): 1083- 1092. |
| ZHAO C X , LI H , DONG L , et al. Safety analysis and evaluation ofairborune HUD system based on STPA-Bayes model[J]. Systems Engeneering and Electronics, 2020, 42 (5): 1083- 1092. | |
| 15 |
WANG H L , ZHONG D M , ZHAO T D . Avionics system failure analysis and verification based on model checking[J]. Engineering Failure Analysis, 2019, 105, 373- 385.
doi: 10.1016/j.engfailanal.2019.06.020 |
| 16 | ASARE P, LACH J, STANKOVIC J. FSTPA-I: a formal approach to hazard identification via system theoretic process analysis[C]//Proc. of the 4th IEEE/ACM International Conference on Cyber-Physical System, 2013: 150-159. |
| 17 | CARPITELLA S . A risk evaluation framework for the best maintenance strategy: the case of a marine salt manufacture firm[J]. Reliability Engineering & System Safety, 2021, 205, 107265. |
| 18 | GUO Q J . Resilience assessment of safety system at subway construction sites applying analytic network process and extension cloud models[J]. Reliability Engineering & System Safety, 2020, 201, 106956. |
| 19 | BALALI A . Ranking effective risks on human resources threats in natural gas supply projects using ANP-COPRAS method: case study of Shiraz[J]. Reliability Engineering & System Safety, 2021, 208, 107442. |
| 20 | READ G J M , NAWEED A , SALMON P M . Complexity on the rails: a systems-based approach to understanding safety management in rail transport[J]. Reliability Engineering & System Safety, 2019, 188, 352- 365. |
| 21 | AC-25-19A. Certification maintenance requirements[S]. Washington D.C. : Federal Aviation Authority, 2011. |
| 22 | ATASOY V E , CETEK C . Enhanced cruise range prediction for narrow-body turbofan commercial aircraft based on QAR data[J]. The Aeronautical Journal, 2020, 125 (1286): 672- 701. |
| 23 | 修忠信. 民用飞机系统安全性设计与分析技术概括[M]. 上海: 上海交通大学出版社, 2013. |
| XIU Z X . Introduction to safety design and evaluation techno-logy for civil aircraft systems[M]. Shanghai: Shanghai Jiaotong University Press, 2013. | |
| 24 | 汪应洛. 系统工程[M]. 5版 北京: 机械工业出版社, 2015: 131- 136. |
| WANG Y L . Systems engineering[M]. 5th ed Beijing: China Machine Press, 2015: 131- 136. | |
| 25 | 张广泉. 形式化方法导论[M]. 北京: 清华大学出版社, 2015: 39- 180. |
| ZHANG G Q . Introduction to formal methods[M]. Beijing: Tsinghua University Press, 2015: 39- 180. | |
| 26 |
LONGJI D A , EMILIA V . System safety assessment based on STPA and model checking[J]. Safety Science, 2018, 109, 130- 143.
doi: 10.1016/j.ssci.2018.05.009 |
| 27 |
DAHMANE W M , OUCHANI S , BOUARFA H . Towards a reliable smart city through formal verification and network analysis[J]. Computer Communications, 2021, 180, 171- 187.
doi: 10.1016/j.comcom.2021.09.006 |
| 28 |
CHEN L , JIAO J , WEI Q X , et al. An improved formal fai-lure analysis approach for safety-critical system based on MBSA[J]. Engineering Failure Analysis, 2017, 82, 713- 725.
doi: 10.1016/j.engfailanal.2017.06.034 |
| 29 |
柯宇航, 李艳军, 曹愈远, 等. 基于模型的飞控系统安全性分析研究[J]. 系统工程与电子技术, 2021, 43 (11): 3259- 3265.
doi: 10.12305/j.issn.1001-506X.2021.11.26 |
|
KE Y H , LI Y J , CAO Y Y , et al. Research on model-based safety analysis of flight control system[J]. Systems Engineering and Electronics, 2021, 43 (11): 3259- 3265.
doi: 10.12305/j.issn.1001-506X.2021.11.26 |
|
| 30 | 郑磊, 胡剑波. 基于STAMP/STPA的机轮刹车系统安全性分析[J]. 航空学报, 2017, 38 (1): 246- 256. |
| ZHENG L , HU J B . Safety analysis of wheel brake system based on STAMP/STPA[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38 (1): 246- 256. |
| [1] | Jianing DENG, Yu WU, Shuting XU, Jinzhan GOU. Comprehensive evaluation of carrier aircraft's dispatch and recovery based on fuzzy Bayesian-ANP [J]. Systems Engineering and Electronics, 2022, 44(11): 3423-3432. |
| [2] | Yuhang KE, Yanjun LI, Yuyuan CAO, Xingcheng ZHANG. Research on model-based safety analysis of flight control system [J]. Systems Engineering and Electronics, 2021, 43(11): 3259-3265. |
| [3] | Changxiao ZHAO, Hao LI, Lei DONG, Peng WANG. Safety analysis and evaluation of airborne HUD system based on STPA-Bayes model [J]. Systems Engineering and Electronics, 2020, 42(5): 1083-1092. |
| [4] | Sen QIAO, Zhiqiu HUANG, Jinyong WANG, Weijian WAN. DFT quantitative analysis method based on statistical model checking [J]. Systems Engineering and Electronics, 2020, 42(2): 480-488. |
| [5] | CHEN Lu, JIAO Jian, WEI Qianxin. Model-checking oriented unified modeling method based on NuSMV [J]. Systems Engineering and Electronics, 2018, 40(7): 1654-1659. |
| [6] | CHEN Lei, JIAO Jian, ZHAO Tingdi. Review for model-based safety analysis of complex safety-critical system [J]. Systems Engineering and Electronics, 2017, 39(6): 1287-1291. |
| [7] | HE Deyu1,2, HU Niaoqing1,2, HU Lei1,2, CHEN Ling1,2, GUO Yiping3. Design of demonstration platform of fault safety analysis -based on virtual prototyping [J]. Systems Engineering and Electronics, 2017, 39(3): 681-686. |
| [8] | ZHANG Di, GUO Qi-sheng, LI Zhi-guo. Capability limited hierarchy evaluation of weapon equipment system based on ANP [J]. Systems Engineering and Electronics, 2015, 37(4): 817-824. |
| [9] | JIANG Jiang,LI Xuan,CHEN Ying-wu,YANG Ke-wei. Evidential network and its application in safety analysis of aerospace systems [J]. Journal of Systems Engineering and Electronics, 2011, 33(6): 1270-1275. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||