| 1 | OLIVEIRA I L ,  FILETO R ,  SPECK R , et al.  Towards holistic entity linking: survey and directions[J]. Information Systems, 2021, 95, 101624. doi: 10.1016/j.is.2020.101624
 | 
																													
																							| 2 | MYTHREI S ,  SINGARAVELAN S .  Survey on entity linking for domain specific with heterogeneous information networks[J]. Informatologia, 2020, 53 (3/4): 173- 184. | 
																													
																							| 3 | 马忠贵, 倪润宇, 余开航.  知识图谱的最新进展、关键技术和挑战[J]. 工程科学学报, 2020, 42 (10): 1254- 1266. | 
																													
																							|  | MA Z G ,  NI R Y ,  YU K H .  Recent advances, key technologies and challenges in knowledge graph[J]. Journal of Engineering Science, 2020, 42 (10): 1254- 1266. | 
																													
																							| 4 | 官赛萍, 靳小龙, 贾岩涛, 等.  面向知识图谱的知识推理研究进展[J]. 软件学报, 2018, 29 (10): 2966- 2994. | 
																													
																							|  | GUAN S P ,  JIN X L ,  JIA Y T , et al.  Knowledge inference based on knowledge graph[J]. Journal of Software, 2018, 29 (10): 2966- 2994. | 
																													
																							| 5 | 张仲伟, 曹雷, 陈希亮, 等.  基于神经网络的知识推理研究综述[J]. 计算机工程与应用, 2019, 55 (12): 8- 19.8-19, 36 | 
																													
																							|  | ZHANG Z W ,  CAO L ,  CHEN X L , et al.  A review of knowledge reasoning based on neural network[J]. Computer Engineering and Applications, 2019, 55 (12): 8- 19.8-19, 36 | 
																													
																							| 6 | 漆桂林, 高桓, 吴天星.  知识图谱研究进展[J]. 情报工程, 2017, 3 (1): 4- 25. | 
																													
																							|  | QI G L ,  GAO H ,  WU T X .  Progress in knowledge graph[J]. Information Engineering, 2017, 3 (1): 4- 25. | 
																													
																							| 7 | 刘峤, 李杨, 段宏, 等.  知识图谱构建技术综述[J]. 计算机研究与发展, 2016, 53 (3): 582- 600. | 
																													
																							|  | LIU Q ,  LI Y ,  DUAN H , et al.  A review of knowledge graph construction techniques[J]. Journal of Computer Research and Development, 2016, 53 (3): 582- 600. | 
																													
																							| 8 | 张钹, 朱军, 苏航.  迈向第三代人工智能[J]. 中国科学: 信息科学, 2020, 50 (9): 1281- 1302. | 
																													
																							|  | ZHANG B ,  ZHU J ,  SU H .  Towards the third generation of artificial intelligence[J]. Science China: Information Science, 2020, 50 (9): 1281- 1302. | 
																													
																							| 9 | LI D ,  FU Z J ,  ZHENG Z Y .  An entity linking model based on candidate features[J]. Social Network Analysis and Mining, 2021, 11 (1): 50. doi: 10.1007/s13278-021-00761-z
 | 
																													
																							| 10 | WANG Y T, LI Z X, YANG Q, et al. WebEL: improving entity linking with extra web contexts[C]//Proc. of the Web Information Systems Engineering, 2019: 507-522. | 
																													
																							| 11 | XIE T ,  BIN W U ,  JIA B , et al.  Graph-ranking collective Chinese entity linking algorithm[J]. Frontiers of Computer Science, 2020, 14 (2): 291- 303. doi: 10.1007/s11704-018-7175-0
 | 
																													
																							| 12 | FENG H J, DUAN L, ZHANG B Y, et al. A collective entity linking method based on graph embedding algorithm[C]//Proc. of the 5th International Conference on Mechanical, Control and Computer Engineering, 2020: 1479-1482. | 
																													
																							| 13 | FINN V K ,  SHESTERNIKOVA O .  A new variant of the genera-lized JSM-method for automatic support of scientific research[J]. Scientific and Technical Information Processing, 2017, 44 (5): 338- 344. doi: 10.3103/S0147688217050045
 | 
																													
																							| 14 | PINGLE A, PIPLAI A, MITTAL S, et al. RelExt: relation extraction using deep learning approaches for cybersecurity knowledge graph improvement[C]//Proc. of the IEEE/ACM International Conference on Advances in Social Networks Ana-lysis and Mining, 2020: 879-886. | 
																													
																							| 15 | DASGUPTA S, PIPLAI A, KOTAL A, et al. A comparative study of deep learning based named entity recognition algorithms for cybersecurity[C]//Proc. of the IEEE International Conference on Big Data, 2020: 2596-2604. | 
																													
																							| 16 | LIU X, ATHANASIOU C E, PADTURE N P, et al. Knowledge extraction and transfer in data-driven fracture mechanics[J]. Proceedings of the National Academy of Sciences, 2021, 118(23): e2104765118. | 
																													
																							| 17 | WU L F, CHEN Y, SHEN K, et al. Graph neural networks for natural language processing: a survey[EB/OL]. [2021-06-13]. https://arxiv.org/abs/2106.06090. | 
																													
																							| 18 | YUAN H, YU H Y, GUI S R, et al. Explainability in graph neural networks: a taxonomic survey[EB/OL]. [2021-06-13]. https://arxiv.org/abs/2012.15445. | 
																													
																							| 19 | SUN Y N ,  XU Y J ,  LI S .  Knowledge-aware path: interpretable graph reasoning in proactive dialogue generation[J]. The Journal of China Universities of Posts and Telecommunications, 2021, 28 (1): 1- 9. | 
																													
																							| 20 | HOSPEDALES T .  Meta-learning in neural networks: a survey[J]. IEEE Trans.on Pattern Analysis and Machine Intelligence, 2021, 44 (9): 5149- 5169. | 
																													
																							| 21 | MONDAL A. A survey of reinforcement learning techniques: strategies, recent development, and future directions[EB/OL]. [2021-06-13]. https://arxiv.org/abs/2001.06921. | 
																													
																							| 22 | HUISMAN M ,  RIJN J ,  PLAAT A .  A survey of deep meta-learning[J]. Artificial Intelligence Review, 2021, 54, 4483- 4541. doi: 10.1007/s10462-021-10004-4
 | 
																													
																							| 23 | GHOSH S ,  BEQUETTE B W .  Process systems engineering and the human-in-the-loop: the smart control room[J]. Industrial and Engineering Chemistry Research, 2020, 59 (6): 2422- 2429. doi: 10.1021/acs.iecr.9b04739
 | 
																													
																							| 24 | 刘全, 翟建伟, 章宗长, 等.  深度强化学习综述[J]. 计算机学报, 2018, 41 (1): 1- 27. | 
																													
																							|  | LIU Q ,  ZHAI J W ,  ZHANG Z C , et al.  A review of deep reinforcement learning[J]. Chinese Journal of Computers, 2018, 41 (1): 1- 27. | 
																													
																							| 25 | MAZYAVKINA N ,  SVIRIDOV S ,  IVANOV S , et al.  Reinforcement learning for combinatorial optimization: a survey[J]. Computers & Operations Research, 2021, 134 (1): 105400. | 
																													
																							| 26 | GRONAUER S ,  DIEPOLD K .  Multi-agent deep reinforcement learning: a survey[J]. Artificial Intelligence Review, 2022, 55 (2): 895- 943. | 
																													
																							| 27 | 李晨溪, 曹雷, 张永亮, 等.  基于知识的深度强化学习研究综述[J]. 系统工程与电子技术, 2017, 39 (11): 2603- 2613. | 
																													
																							|  | LI C X ,  CAO L ,  ZHANG Y L , et al.  A review of knowledge-based deep reinforcement learning[J]. Systems Engineering and Electronics, 2017, 39 (11): 2603- 2613. | 
																													
																							| 28 | 丁兆云, 贾焰.  微博数据挖掘研究综述[J]. 计算机研究与发展, 2014, 51 (4): 691- 706. | 
																													
																							|  | DING Z Y ,  JIA Y .  A review of microblog data mining[J]. Journal of Computer Research and Development, 2014, 51 (4): 691- 706. | 
																													
																							| 29 | BIZER C ,  LEHMANN J ,  KOBILAROV G , et al.  DBpedia-a crystallization point for the web of data[J]. Web Semantics Science Services and Agents on the World Wide Web, 2009, 7 (3): 154- 165. | 
																													
																							| 30 | LIU Y, LI H, GARCIA-DURAN A, et al. MMKG: multi-modal knowledge graphs[C]//Proc. of the European Semantic Web Conference, 2019: 459-474. | 
																													
																							| 31 | WANG M ,  WANG H F ,  QI G L , et al.  Richpedia: a large-scale, comprehensive multi-modal knowledge graph[J]. Big Data Research, 2020, 22 (10): 100159. |