Systems Engineering and Electronics ›› 2020, Vol. 42 ›› Issue (12): 2867-2874.doi: 10.3969/j.issn.1001-506X.2020.12.24
Previous Articles Next Articles
Xinhao DONG1(
), Zhijie ZHOU1,2(
), Youmin ZHANG2(
), Zhichao FENG1(
), You CAO1(
)
Received:2020-03-24
Online:2020-12-01
Published:2020-11-27
CLC Number:
Xinhao DONG, Zhijie ZHOU, Youmin ZHANG, Zhichao FENG, You CAO. Forecasting method of the error coefficient for SIMU based on belief rule base[J]. Systems Engineering and Electronics, 2020, 42(12): 2867-2874.
Table 4
Initial prediction model of error coefficient"
| 序号 | 规则权重 | 属性 | 误差系数置信度分配 | |
| x1 | x2 | |||
| 1 | 1 | VS | VS | (0 0.1 0.9) |
| 2 | 1 | VS | S | (0 0.2 0.8) |
| 3 | 1 | VS | M | (0 0.3 0.7) |
| 4 | 1 | VS | H | (0 0.35 0.65) |
| 5 | 1 | VS | VH | (0 0.4 0.6) |
| 6 | 1 | S | VS | (1 0 0) |
| 7 | 1 | S | S | (0 0.5 0.5) |
| 8 | 1 | S | M | (0 0.6 0.4) |
| 9 | 1 | S | H | (0 0.7 0.3) |
| 10 | 1 | S | VH | (0 0.8 0.2) |
| 11 | 1 | M | VS | (0 0.9 0.1) |
| 12 | 1 | M | S | (0 1 0) |
| 13 | 1 | M | M | (0 0.5 0.5) |
| 14 | 1 | M | H | (0.1 0.9 0) |
| 15 | 1 | M | VH | (0.2 0.8 0) |
| 16 | 1 | H | VS | (0.25 0.75 0) |
| 17 | 1 | H | S | (0.3 0.7 0) |
| 18 | 1 | H | M | (0.4 0.6 0) |
| 19 | 1 | H | H | (0.5 0.5 0) |
| 20 | 1 | H | VH | (0.6 0.4 0) |
| 21 | 1 | VH | VS | (0.7 0.3 0) |
| 22 | 1 | VH | S | (0.8 0.2 0) |
| 23 | 1 | VH | M | (0.9 0.1 0) |
| 24 | 1 | VH | H | (0.95 0.05 0) |
| 25 | 1 | VH | VH | (1 0 0) |
| — | — | — | — | —— |
Table 5
Optimized Initial prediction model of error coefficient"
| 序号 | 规则权重 | 属性 | 误差系数置信度分配 | |
| x1 | x2 | |||
| 1 | 0.61 | VS | VS | (0 0 1) |
| 2 | 0.99 | VS | S | (0.1 0.9 0) |
| 3 | 0.39 | VS | M | (0.88 0.05 0.07) |
| 4 | 0.42 | VS | H | (0.75 0.20 0.05) |
| 5 | 0.09 | VS | VH | (0.21 0.29 0.50) |
| 6 | 0 | S | VS | (0.36 0.56 0.80) |
| 7 | 0.17 | S | S | (0.99 0 0.01) |
| 8 | 0.56 | S | M | (0.92 0.05 0.03) |
| 9 | 0.48 | S | H | (0.53 0.30 0.17) |
| 10 | 0.96 | S | VH | (0.28 0.40 0.32) |
| 11 | 1 | M | VS | (0.04 0.64 0.31) |
| 12 | 0.08 | M | S | (0.21 0.79 0) |
| 13 | 0.81 | M | M | (0.59 0.24 0.17) |
| 14 | 0.44 | M | H | (0.49 0.35 0.16) |
| 15 | 0.2 | M | VH | (0.52 0.48 0) |
| 16 | 0.01 | H | VS | (0.31 0.66 0.03) |
| 17 | 0.71 | H | S | (0.39 0.34 0.27) |
| 18 | 0.97 | H | M | (0.57 0.28 0.15) |
| 19 | 0.51 | H | H | (0.69 0.21 0.10) |
| 20 | 0.82 | H | VH | (0.93 0.06 0.01) |
| 21 | 0.71 | VH | VS | (0.97 0 0.03) |
| 22 | 0.07 | VH | S | (0.56 0.39 0.05) |
| 23 | 0.56 | VH | M | (0.37 0.30 0.33) |
| 24 | 1 | VH | H | (0.67 0.25 0.08) |
| 25 | 0.94 | VH | VH | (0.99 0.01 0) |
| — | — | — | — | —— |
| 1 |
WANG L , WU W Q , LI G , et al. Ring laser gyro G-sensitive misalignment calibration in linear vibration environments[J]. Sensors, 2018, 18 (2): 601- 609.
doi: 10.3390/s18020601 |
| 2 | 解静, 肖龙旭, 任革学. 捷联惯测组合误差系数分离与补偿方法[J]. 系统工程与电子技术, 2011, 33 (12): 2716- 2720. |
| XIE J , XIAO L X , REN G X . Error coefficients separation and compensation for SIMU[J]. Systems Engineering and Electro-nics, 2011, 33 (12): 2716- 2720. | |
| 3 |
SIAVASH H . Deep Kalman filter: simultaneous multi-sensor integration and modelling; a GNSS/IMU case study[J]. Sensors, 2018, 18 (5): 1316- 1325.
doi: 10.3390/s18051316 |
| 4 | 于湘涛, 董卫华, 张兰, 等. 基于灰色最小二乘支持向量机的加速度计参数预测[J]. 中国惯性技术学报, 2013, 21 (6): 813- 816. |
| YU X T , DONG W H , ZHANG L , et al. Prediction of accelero-meter pa-rameters based on grey least squares support vector machine[J]. Journal of Chinese Inertial Technology, 2013, 21 (6): 813- 816. | |
| 5 | 黄小凯, 陈云霞, 康锐. 加速度计参数变化建模方法[J]. 北京航空航天大学学报, 2010, 36 (10): 1229- 1233. |
| HUANG X K , CHEN Y X , KANG R . Bias and scale factor drift modeling met-hods for accelerometers[J]. Journal of Beijing University of Aeronautics and Astronautics, 2010, 36 (10): 1229- 1233. | |
| 6 | 汪立新, 王建华, 李成. 捷联惯组误差系数的分形特征及插值算法[J]. 中国惯性技术学报, 2012, 20 (5): 515- 520. |
| WANG L X , WANG J C , LI C . Fractal characteristic and interpolation method for SIMU error coefficients[J]. Journal of Chinese Inertial Technology, 2012, 20 (5): 515- 520. | |
| 7 | YAN G M , YAN W S , XU D M . Application of simplified UKF in SINS initial alignment for large misalignment angles[J]. Journal of Chinese Inertial Technology, 2008, 16 (3): 253- 264. |
| 8 | FENG Y , NAVAL E D . An analysis of the maintenance mode of laser gyro strapdown inertial navigation system[J]. Instrumentation Technology, 2018, 11, 17- 19. |
| 9 |
LEE H K , LEE J G , JEE G I . Calibration of measurement delay in global positioning system/strapdown inertial navigation system[J]. Journal of Guidance, Control, and Dynamics, 2002, 25 (2): 240- 247.
doi: 10.2514/2.4904 |
| 10 |
YANG J B , LIU J , WANG J , et al. Belief rule-base inference methodology using the evidential reasoning approach-RIMER[J]. IEEE Trans.on Systems, Man, and Cybernetics-Part A: Systems and Humans, 2006, 36 (2): 266- 285.
doi: 10.1109/TSMCA.2005.851270 |
| 11 |
YANG J B , LIU J , XU D L , et al. Optimization models for training belief rule based systems[J]. IEEE Trans.on Systems, Man, and Cybernetics-Part A: Systems and Humans, 2007, 37 (4): 569- 585.
doi: 10.1109/TSMCA.2007.897606 |
| 12 |
YANG J B , WANG Y M , XU D L , et al. Belief rule-based methodology for mapping consumer preferences and setting product targets[J]. Expert Systems with Applications, 2012, 39 (5): 4749- 4759.
doi: 10.1016/j.eswa.2011.09.105 |
| 13 |
HU G Y , ZHOU Z J , ZHANG B C , et al. A method for predicting the network security situation based on hidden BRB model and revised CMA-ES algorithm[J]. Applied Soft Computing, 2016, 48, 404- 418.
doi: 10.1016/j.asoc.2016.05.046 |
| 14 | CHANG L L , CHEN Y W , HAO Z Y , et al. Indirect disjunctive belief rule base modeling using limited conjunctive rules: two possible means[J]. International Journal of Approximate Reasoning, 2019, 108 (5): 1- 20. |
| 15 | ZHOU Z J , HU G Y , ZHANG B C , et al. A model for hidden behavior prediction of complex systems based on belief rule base and power set[J]. IEEE Trans.on Systems, Man, and Cybernetics: Systems, 2018, 44 (9): 1649- 1655. |
| 16 |
YIN X J , WANG Z L , ZHANG B C , et al. A double layer BRB model for health prognostics in complex electromechanical system[J]. IEEE Access, 2017, 5, 23833- 23847.
doi: 10.1109/ACCESS.2017.2766086 |
| 17 |
YANG J B , XU D L . Nonlinear information aggregation via evidential reasoning in multi attribute decision analysis under uncertainty[J]. IEEE Trans.on Systems, Man, and Cybernetics-Part A: Systems and Humans, 2002, 32 (3): 376- 393.
doi: 10.1109/TSMCA.2002.802809 |
| 18 | 于恩宁.激光捷联惯性测量组合故障诊断技术研究[D].哈尔滨:哈尔滨工业大学, 2018. |
| YU E N. The research of fault diagnosis techology on laser gyro strapdown inertial measurement unit[D]. Harbin: Harbin Institute of Technology, 2018. | |
| 19 | WANG J . Research on zero speed correction of laser gyro strapdown inertial navigation system[J]. Piezoelectrics & Acoustooptics, 2018, 40 (4): 626- 632. |
| 20 |
LI G L , ZHOU Z J , HU C H , et al. A new safety assessment model for complex system based on the conditional generalized minimum variance and the belief rule base[J]. Safety Science, 2017, 93, 108- 120.
doi: 10.1016/j.ssci.2016.11.011 |
| 21 |
ZHOU Z J , CHANG L L , HU C H , et al. A new BRB-ER-based model for assessing the lives of products using both failure data and expert knowledge[J]. IEEE Trans.on Systems, Man, and Cybernetics: Systems, 2016, 46 (11): 1529- 1543.
doi: 10.1109/TSMC.2015.2504047 |
| 22 | YANG J B . Rule and utility based evidential reasoning approach for multi-attribute decision analysis under uncertainties[J]. European Journal of Operational Research, 2001, 131 (1): 31- 61. |
| 23 |
ZHAO F J , ZHOU Z J , HU C H , et al. A new evidential reasoning-based method for online safety assessment of complex systems[J]. IEEE Trans.on Systems, Man, and Cybernetics: Systems, 2018, 48, 954- 966.
doi: 10.1109/TSMC.2016.2630800 |
| 24 |
YANG J B , XU D L . Evidential reasoning rule for evidence combination[J]. Artificial Intelligence, 2013, 205, 1- 29.
doi: 10.1016/j.artint.2013.09.003 |
| 25 | YANG J B , SINGH M G . An evidential reasoning approach for multiple-attribute decision making with uncertainty[J]. IEEE Trans.on Systems, Man, and Cybernetics, 1994, 24 (1): 1- 18. |
| 26 |
FENG Z C , ZHOU Z J , HU C H , et al. Fault diagnosis based on belief rule base with considering attribute correlation[J]. IEEE Access, 2018, 6, 2055- 2067.
doi: 10.1109/ACCESS.2017.2781365 |
| 27 |
HU G Y , ZHOU Z J , ZHANG B C , et al. A method for predicting the network security situation based on hidden BRB model and revised CMA-ES algorithm[J]. Applied Soft Computing, 2016, 48, 404- 418.
doi: 10.1016/j.asoc.2016.05.046 |
| [1] | Jie LEI, Xiaobin XU, Xiaojian XU, Leilei CHANG. Concurrent fault diagnosis method based on belief rule base [J]. Systems Engineering and Electronics, 2020, 42(2): 497-505. |
| [2] | WANG Xiaoyan, SUN Jianbin, ZHAO Qingsong, CHANG Leilei, ZOU Zhigang. Belief rule base approach for capability satisfactory evaluation with incomplete information [J]. Systems Engineering and Electronics, 2019, 41(11): 2507-2513. |
| [3] | JIANG Wenqi, QI Chenchen. Research on similarity measure model of interval-valued intuitionistic fuzzy sets driven by feature matching [J]. Systems Engineering and Electronics, 2018, 40(11): 2505-. |
| [4] | DI Ruohai, GAO Xiaoguang, GUO Zhigao. Bayesian networks structure learning based on improved BIC scoring [J]. Systems Engineering and Electronics, 2017, 39(2): 437-444. |
| [5] | XIE Jing, XIAO Long-xu, REN Ge-xue. Error coefficients separation and compensation for SIMU [J]. Journal of Systems Engineering and Electronics, 2011, 33(12): 2716-2720. |
| [6] | HONG Bei,HU Chang-hua,JIANG Xue-peng. Error prediction of IGS based on subject and object information [J]. Journal of Systems Engineering and Electronics, 2010, 32(8): 1785-1788. |
| [7] | QIAN Shan, LI Peng-kui, ZHANG Shi-feng, CAI Hong. Study on modeling of MIMU/GPS navigation and time delay synchronization method of GPS [J]. Journal of Systems Engineering and Electronics, 2009, 31(6): 1432-1435. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||