Systems Engineering and Electronics ›› 2020, Vol. 42 ›› Issue (1): 23-29.doi: 10.3969/j.issn.1001-506X.2020.01.04
Previous Articles Next Articles
Shanhong HE1(
), Mengqian JI1(
), Liangyu XIE1(
), Jin FAN2(
)
Received:2019-05-24
Online:2020-01-01
Published:2019-12-23
Supported by:CLC Number:
Shanhong HE, Mengqian JI, Liangyu XIE, Jin FAN. Two-dimensional DOA estimation for multi-beam reflector antenna based on focal-plane field[J]. Systems Engineering and Electronics, 2020, 42(1): 23-29.
| 1 | ANGEVAIN J, FONSECA N, SCHOBERT D, et al. Multibeam reflector antennas for space applications: current trends and future perspectives in Europe[C]//Proc.of the 12th European Conference on Antennas and Propagation, 2018: 1-5. |
| 2 |
IUPIKOV O A , IVASHINA M V , SKOU N , et al. Multibeam focal plane arrays with digital beamforming for high precision space-borne ocean remote sensing[J]. IEEE Trans.on Antennas and Propagation, 2018, 66 (2): 737- 748.
doi: 10.1109/TAP.2017.2763174 |
| 3 | LIU L, GRAINGE K, NAVARRINI A. Phased arrays for reflector observing systems and its upgrade[C]//Proc.of the 2nd URSI Atlantic Radio Science Meeting, 2018: 1-4. |
| 4 |
ROHRDANTZ B , JASCHKE T , REUSCHEL T , et al. An electronically scannable reflector antenna using a planar active array feed at Ka-band[J]. IEEE Trans.on Microwave Theory and Techniques, 2017, 65 (5): 1650- 1661.
doi: 10.1109/TMTT.2017.2663402 |
| 5 |
HENLEY M , POUR M . Reconfigurable displaced phase center reflector antennas with focal plane arrays[J]. IEEE Antennas and Wireless Propagation Letters, 2019, 18 (6): 1298- 1302.
doi: 10.1109/LAWP.2019.2916043 |
| 6 | LIU L, GRAINGE K. Realization of phased arrays for reflector observing systems[C]//Proc.of the General Assembly and Scientific Symposium of the International Union of Radio Science, 2017: 1-4. |
| 7 | HUT B, BRINK R H, CAPPELLEN W A. Status update on the system validation of APERTIF, the phased array feed system for the westerbork synthesis radio telescope[C]//Proc.of the 11th European Conference on Antennas and Propagation, 2017: 1960-1961. |
| 8 | YOO S, CHOO H. Beamforming characteristics of a phased array reflector using a log periodic dipole antenna as an array element[C]//Proc.of the International Symposium on Antennas and Propagation, 2018: 1-2. |
| 9 | SHAW R D. Phased array feed development for ASKAP with the benefit of hindsight[C]//Proc.of the 11th European Conference on Antennas and Propagation, 2017: 3832-3836. |
| 10 | CAO H L, CHEN Z J, TAO L, et al. A novel method of direction of arrival estimation for large parabolic reflector antenna[C]//Proc.of the IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, 2017: 567-568. |
| 11 | SAKA B, KADERLI A. Direction of arrival estimation and adaptive nulling in array-fed reflectors[C]//Proc.of the Melecon 9th Mediterranean Electro Technical Conference, 1998: 274-277. |
| 12 |
YUAN Q W , CHEN Q , SAWAYA K . Accurate DOA estimation using array antenna with arbitrary geometry[J]. IEEE Trans.on Antennas and Propagation, 2005, 53 (4): 1352- 1357.
doi: 10.1109/TAP.2005.844409 |
| 13 | DONG F Y, DONG Q, YAN M J, et al. DOA estimation of fast moving target in accelerated scene[C]//Proc.of the IEEE International Conference on Signal Processing, Communications and Computing, 2017: 1-4. |
| 14 |
LI J F , LI Y X , ZHANG X F . Two-dimensional off-grid DOA estimation using unfolded parallel coprime array[J]. IEEE Communications Letters, 2018, 22 (12): 2495- 2498.
doi: 10.1109/LCOMM.2018.2872955 |
| 15 | SHI J P, HU G P, ZHANG X F, et al. Sum and difference coarrays based 2-D DOA estimation with co-prime parallel arrays[C]//Proc.of the 9th International Conference on Wireless Communications and Signal Processing, 2017: 1-4. |
| 16 | CHEN Y L, LIN C C. Estimating direction of arrival for coherent signals by using projection subspace without source number information[C]//Proc.of the International Conference on Advanced Materials for Science and Engineering, 2016: 9-12. |
| 17 | VIKAS B, VAKULA D D. Performance comparison of MUSIC and ESPRIT algorithms in presence of coherent signals for DOA estimation[C]//Proc.of the International Conference of Electronics, Communication and Aerospace Technology, 2017: 403-405. |
| 18 | CHANG N, HONG X, WANG W J, et al.Joint delay and angle estimation for GNSS multipath signals based on spatial and frequential smoothing[C]//Proc.of the 14th IEEE International Conference on Signal Processing, 2018: 203-207. |
| 19 | DO V L, NGUYEN T B, DAO V K, et al. Direction finding in multipath environments using moving uniform circular arrays[C]//Proc.of the 3rd International Conference on Frontiers of Signal Processing, 2017: 50-54. |
| 20 |
INOUE M , HAYASHI K , MORI H , et al. A DOA estimation method with kronecker subspace for coherent signals[J]. IEEE Communications Letters, 2018, 22 (11): 2306- 2309.
doi: 10.1109/LCOMM.2018.2870824 |
| 21 | KIKUMA N, TANAKA K, SAKAKIBARA K. Performance improvement of localization of radio sources by using spatial smoothing processing in near-field DOA-matrix method with SAGE algorithm[C]//Proc.of the IEEE MTT-S International Conference on Microwaves for Intelligent Mobility, 2017: 127-130. |
| 22 | ONG L T. Experimental study on spatial smoothing direction of arrival estimation for coherent signals[C]//Proc.of the IEEE Region 10 Conference, 2016: 1411-1414. |
| 23 | FAN X, ZHOU C W, GU Y J, et al.Toeplitz matrix reconstruction of interpolated coprime virtual array for DOA estimation[C]//Proc.of the IEEE 85th Vehicular Technology Conference, 2017: 1-5. |
| 24 |
WU X H , ZHU W P , YAN J . A Toeplitz covariance matrix reconstruction approach for direction-of-arrival estimation[J]. IEEE Trans.on Vehicular Technology, 2017, 66 (9): 8223- 8237.
doi: 10.1109/TVT.2017.2695226 |
| 25 | CHENG X, WANG Y M. A reduced-complex method based on Toeplitz reconstruction for direction of arrival estimation in multiple-input multiple-output sonar[C]//Proc.of the OCEANS-MTS/IEEE Kobe Techno-Oceans, 2018: 1-6. |
| 26 | LIU X Z, SONG M Y, YANG Y H.An effective DOA estimation method of coherent signals based on reconstruct weighted noise subspace[C]//Proc.of the 29th Chinese Control and Decision Conference, 2017: 2218-2222. |
| 27 | WU Y F, CONG Y L, LI C H. DOA estimation of coherent signals based on matrix reconstruction[C]//Proc.of the International Conference on Computer, Mechatronics, Control and Electronic Engineering, 2010: 280-283. |
| 28 |
游鸿, 黄建国, 金勇, 等. 基于加权信号子空间投影的MUSIC改进算法[J]. 系统工程与电子技术, 2008, 30 (5): 792- 794.
doi: 10.3321/j.issn:1001-506X.2008.05.003 |
|
YOU H , HUANG J G , JIN Y , et al. Improving MUSIC performance in snapshot deficient scenario via weighted signal-subspace projection[J]. Systems Engineering and Electronics, 2008, 30 (5): 792- 794.
doi: 10.3321/j.issn:1001-506X.2008.05.003 |
|
| 29 |
LI D , PAN Z C . The five-hundred-meter aperture spherical radio telescope project[J]. Radio Science, 2016, 51 (7): 1060- 1064.
doi: 10.1002/2015RS005877 |
| 30 | SMITH S L, DUNNING A, SMART K W, et al. Performance validation of the 19-element multibeam feed for the five-hundred-metre aperture spherical radio telescope[C]//Proc.of the IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, 2017: 2137-2138. |
| [1] | Jialei LIU, Jiazhi MA, Longfei SHI. DOA estimation algorithm based on fourth-order cumulant using virtual beam forming [J]. Systems Engineering and Electronics, 2022, 44(7): 2134-2142. |
| [2] | Zhiyu QU, Meng SUN, Huanyao DAI. Joint estimation algorithm of DOA and polarization information based on conformal array [J]. Systems Engineering and Electronics, 2022, 44(6): 1798-1804. |
| [3] | Juan WEI, Shian YAN, Fangli NING. DOA estimation method for coherent signals based on coprime array virtual array spatial smoothing [J]. Systems Engineering and Electronics, 2022, 44(4): 1069-1077. |
| [4] | Baohua FAN, Le ZUO, Yong TANG, Zehua HU. DOA estimation of multiple time-varying signals with expectation-maximization algorithm [J]. Systems Engineering and Electronics, 2022, 44(2): 420-426. |
| [5] | Tao CHEN, Lin SHI, Mengyu SHEN. Gridless DOA estimation algorithm based on M-FIPM [J]. Systems Engineering and Electronics, 2022, 44(2): 427-433. |
| [6] | Yili HU, Yongbo ZHAO, Sheng CHEN, Chenghu CAO. Blind polarization DOA estimation of parabolic conformal array based on interpolation fitting [J]. Systems Engineering and Electronics, 2021, 43(8): 2037-2044. |
| [7] | Junpeng SHI, Fangqing WEN, Lin AI, Gong ZHANG, Zhenghui GONG. Angle estimation for bistatic MIMO radar with spatially colored noise [J]. Systems Engineering and Electronics, 2021, 43(6): 1477-1485. |
| [8] | Zixin ZHANG, Guoping HU, Hao ZHOU, Chenghong ZHAN. Low elevation angle estimation algorithm for MIMO radar based on sparse reconstruction of cross-covariance [J]. Systems Engineering and Electronics, 2021, 43(5): 1218-1223. |
| [9] | Silei CAO, Weigui ZENG, Huiqi XU. Broadband DOA estimation method based on eigenvector space focusing [J]. Systems Engineering and Electronics, 2021, 43(2): 294-299. |
| [10] | Yule ZHANG, Guoping HU, Hao ZHOU, Shijie YUE, Feilong ZHAO. DOA estimation of generalized two-level nested MIMO radar with high degree of freedom and low mutual coupling [J]. Systems Engineering and Electronics, 2021, 43(10): 2819-2827. |
| [11] | TAN Weijie, FENG Xi’an. Sparsity-based two dimensional direction-finding method for parallel co-prime arrays [J]. Systems Engineering and Electronics, 2019, 41(5): 937-943. |
| [12] | CHENG Tianhao, WANG Buhong, CAI Bin, LI Xia, LIU Shuaiqi. Nested array structure design of two dimensional hybrid MIMO phased radar [J]. Systems Engineering and Electronics, 2019, 41(3): 541-548. |
| [13] | QI Dong, TANG Min, LIU Chengcheng, ZHAO Yongjun. Two-dimensional DOA estimation method for mixed signals under Gaussian color noise [J]. Systems Engineering and Electronics, 2019, 41(10): 2198-2204. |
| [14] | ZHANG Jiajia, LU Xiaofei, CHEN Hui, JI Zhengyan. Self-calibration of mutual coupling for non-uniform linear array [J]. Systems Engineering and Electronics, 2018, 40(7): 1429-1435. |
| [15] | WU Chenxi, ZHANG Min, WANG Keren. Underdetermined direction of arrival estimation with nonuniform noise [J]. Systems Engineering and Electronics, 2018, 40(3): 498-503. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||