Systems Engineering and Electronics ›› 2025, Vol. 47 ›› Issue (11): 3644-3654.doi: 10.12305/j.issn.1001-506X.2025.11.13
• Sensors and Signal Processing • Previous Articles
Linwei YIN(
), Kai ZHOU(
), Dongdong CHEN(
), Huiwei YAO(
), Mengni WANG(
)
Received:2025-04-15
Accepted:2025-08-12
Online:2025-11-25
Published:2025-12-08
Contact:
Linwei YIN
E-mail:602268379@qq.com;zhoukai1523@yeah.net;cdd_nudt@163.com;pla0611@163.com;mnwang9@163.com
CLC Number:
Linwei YIN, Kai ZHOU, Dongdong CHEN, Huiwei YAO, Mengni WANG. Radar jamming recognition method based on multi-domain refined feature extraction and subjective logic[J]. Systems Engineering and Electronics, 2025, 47(11): 3644-3654.
Table 2
Comparison of recognition performance metrics for different methods %"
| 性能指标 | 干扰类型 | 干扰识别方法 | ||||
| TCNN | DFN | MANET | WECNN | 所提方法 | ||
| 准确率 | SJ | 99.85 | 100.00 | 99.69 | 99.85 | 99.69 |
| BJ | 98.31 | 98.28 | 99.24 | 99.27 | 98.25 | |
| DFTJ | 98.39 | 99.01 | 99.00 | 99.69 | 100.00 | |
| ISDJ | 96.08 | 99.62 | 84.82 | 98.77 | 99.62 | |
| ISCJ | 95.41 | 97.07 | 99.95 | 98.46 | 99.61 | |
| RT | 87.89 | 85.39 | 87.87 | 87.42 | 94.23 | |
| LSJ | 88.78 | 92.99 | 98.62 | 92.97 | 97.28 | |
| SNJ | 86.45 | 88.76 | 95.48 | 87.83 | 94.40 | |
| ISRJ | 97.99 | 99.07 | 98.39 | 99.85 | 99.92 | |
| DDJ | 85.66 | 95.15 | 97.84 | 92.34 | 98.29 | |
| DDJ+SNJ | 87.61 | 91.90 | 88.13 | 90.44 | 95.67 | |
| DFTJ+SNJ | 94.16 | 97.28 | 99.12 | 98.02 | 99.62 | |
| DDJ+ISCJ | 74.76 | 88.92 | 96.75 | 89.66 | 94.39 | |
| SJ+ISRJ | 97.56 | 99.22 | 99.69 | 99.38 | 100.00 | |
| 准确率 | — | 92.06 | 95.19 | 96.04 | 95.28 | 97.93 |
| 精确率 | — | 93.59 | 95.61 | 96.11 | 95.43 | 97.94 |
| F1-score | — | 92.11 | 95.17 | 95.76 | 95.26 | 97.92 |
| Kappa | — | 91.15 | 94.77 | 95.44 | 94.99 | 97.76 |
| 1 |
PAN Y, XIE D X, ZHAO Y R, et al. Overview of radar jamming waveform design[J]. Remote Sensing, 2025, 17 (7): 1218.
doi: 10.3390/rs17071218 |
| 2 | TAN M, WANG C Y, XUE B, et al. A novel deceptive jamming approach against frequency diverse array radar[J]. IEEE Sensors Journal, 2020, 21 (6): 8323- 8332. |
| 3 |
WANG Z, GUO Z W, SHU G F, et al. Radar jamming recognition: models, methods, and prospects[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2025, 18, 3315- 3343.
doi: 10.1109/JSTARS.2024.3522951 |
| 4 |
LI N, CHENG D Y, LU P P, et al. Smart jamming against SAR based on nonlinear frequency-modulated signal[J]. IEEE Trans. on Aerospace and Electronic Systems, 2023, 59 (4): 3588- 3605.
doi: 10.1109/TAES.2022.3228513 |
| 5 |
ZHANG Y P, ZHAO Z J, BU Y. Radar active jamming recognition under open world setting[J]. Remote Sensing, 2023, 15 (16): 4107.
doi: 10.3390/rs15164107 |
| 6 | ZHOU K, SU Y, WANG D Y, et al. Improved SAR interrupted-sampling repeater jamming countermeasure based on waveform agility and mismatched filter design[J]. IEEE Trans. on Geoscience and Remote Sensing, 2023, 61 |
| 7 |
DU P M, CILLIERS J E, OLIVIER K. Design and performance of wideband DRFM for radar test and evaluation[J]. Electronics Letters, 2011, 47 (14): 824- 825.
doi: 10.1049/el.2011.0362 |
| 8 | LUO Z, CAO Y, YEO T S, et al. Few-shot radar jamming recognition network via time-frequency self-attention and global knowledge distillation[J]. IEEE Trans. on Geoscience and Remote Sensing, 2023, 61, 5105612. |
| 9 |
ZHOU H P, WANG L, GUO Z Y. Recognition of radar compound jamming based on convolutional neural network[J]. IEEE Trans. on Aerospace and Electronic Systems, 2023, 59 (6): 7380- 7394.
doi: 10.1109/TAES.2023.3288080 |
| 10 |
LUO Z, CAO Y, YEO T S, et al. Few-shot radar jamming recognition network via complete information mining[J]. IEEE Trans. on Aerospace and Electronic Systems, 2024, 60 (3): 3625- 3638.
doi: 10.1109/TAES.2024.3370129 |
| 11 |
崔国龙, 余显祥, 魏文强, 等. 认知智能雷达抗干扰技术综述与展望[J]. 雷达学报, 2022, 11 (6): 974- 1002.
doi: 10.12000/JR22191 |
|
CUI G L, YU X X, WEI W Q, et al. An overview of antijamming methods and future works on cognitive intelligent radar[J]. Journal of Radars, 2022, 11 (6): 974- 1002.
doi: 10.12000/JR22191 |
|
| 12 |
郝万兵, 马若飞, 洪伟. 基于时频特征提取的雷达有源干扰识别[J]. 火控雷达技术, 2017, 46 (4): 11- 15.
doi: 10.3969/j.issn.1008-8652.2017.04.003 |
|
HAO W B, MA R F, HONG W. Recognition of active radar jamming based on time-frequency feature extraction[J]. Fire Control Radar Technology, 2017, 46 (4): 11- 15.
doi: 10.3969/j.issn.1008-8652.2017.04.003 |
|
| 13 | 杨兴宇, 阮怀林. 基于局部二值模式特征的新型干扰识别算法[J]. 计算机工程, 2018, 44 (7): 285- 290. |
| YANG X Y, RUAN H L. A novel interference recognition algorithm based on local binary pattern feature[J]. Computer Engineering, 2018, 44 (7): 285- 290. | |
| 14 | 李娜. 雷达有源干扰分类与识别方法研究[D]. 西安: 西安电子科技大学, 2017. |
| LI N. Research on classification and recognition methods of radar active jamming[D]. Xi’an: Xidian University, 2017. | |
| 15 |
SHAO G Q, CHEN Y, WEI Y. Convolutional neural network-based radar jamming signal classification with sufficient and limited samples[J]. IEEE Access, 2020, 8, 80588- 80598.
doi: 10.1109/ACCESS.2020.2990629 |
| 16 | LV Q Z, FAN H, LIU J, et al. Multilabel deep learning-based lightweight radar compound jamming recognition method[J]. IEEE Trans. on Instrumentation and Measurement, 2024, 73 |
| 17 | LV Q Z, QUAN Y, FENG W, et al. Radar deception jamming recognition based on weighted ensemble CNN with transfer learning[J]. IEEE Trans. on Geoscience and Remote Sensing, 2021, 60 |
| 18 |
SHAO G Q, CHEN Y, WEI Y. Deep fusion for radar jamming signal classification based on CNN[J]. IEEE Access, 2020, 8, 117236- 117244.
doi: 10.1109/ACCESS.2020.3004188 |
| 19 | HOU L L, ZHANG S N, WANG C X, et al. Jamming recognition of carrier-free UWB cognitive radar based on MANet[J]. IEEE Trans. on Instrumentation and Measurement, 2023, 72 |
| 20 |
张顺生, 陈爽, 陈晓莹, 等. 面向小样本的多模态雷达有源欺骗干扰识别方法[J]. 雷达学报, 2023, 12 (4): 882- 891.
doi: 10.12000/JR23104 |
|
ZHANG S S, CHEN S, CHEN X Y, et al. Active deception jamming recognition method in multimodal radar based on small samples[J]. Journal of Radars, 2023, 12 (4): 882- 891.
doi: 10.12000/JR23104 |
|
| 21 | WEI Z L, FU N, JIANG S Y, et al. Parameter measurement of LFM signal with FRI sampling and nuclear norm denoising[J]. IEEE Trans. on Instrumentation and Measurement, 2022, 71 |
| 22 |
VAN H G, MOSQUERA C, NAPOLES G. A review on the long short-term memory model[J]. Artificial intelligence review, 2020, 53 (8): 5929- 5955.
doi: 10.1007/s10462-020-09838-1 |
| 23 |
XIA T, DANG T, HAN J, et al. Uncertainty-aware health diagnostics via class-balanced evidential deep learning[J]. IEEE Journal of Biomedical and Health Informatics, 2024, 28 (11): 6417- 6428.
doi: 10.1109/JBHI.2024.3360002 |
| 24 |
HAN Z B, ZHANG C Q, FU H Z. Trusted multi-view classification with dynamic evidential fusion[J]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2023, 45 (2): 2551- 566.
doi: 10.1109/TPAMI.2022.3171983 |
| 25 | BAO W T, YU Q, KONG Y. Evidential deep learning for open set action recognition[C]//Proc. of the IEEE/CVF International Conference on Computer Vision, 2021: 13349−13358. |
| 26 | MAO A Q, MOHRI M, ZHONG Y T. Cross-entropy loss functions: theoretical analysis and applications[C]//Proc. of the International Conference on Machine Learning, 2023: 23803−23828. |
| 27 | KINGMA D P, BA J. Adam: a method for stochastic optimization[EB/OL]. [2025-03-15]. http://arxiv.org/abs/1412.6980. |
| 28 | VAN D, HINTION G. Visualizing high-dimensional data using t-SNE[J]. Journal of Machine Learning Research, 2008, 9 (2): 2579- 2605. |
| 29 | WANG D B, FENG L, ZHANG M L. Rethinking calibration of deep neural networks: do not be afraid of overconfidence[J]. Advances in Neural Information Processing Systems, 2021, 34, 11809- 11820. |
| 30 | KRISHNAN R, TICKOO O. Improving model calibration with accuracy versus uncertainty optimization[J]. Advances in Neural Information Processing Systems, 2020, 33, 18237- 18248. |
| 31 |
ABDAR M, POURPANAH F, HUSSAIN S, et al. A review of uncertainty quantification in deep learning: techniques, applications and challenges[J]. Information Fusion, 2021, 76, 243- 297.
doi: 10.1016/j.inffus.2021.05.008 |
| [1] | Jie JIANG, Wenjun YAN, Qing LING, Limin ZHANG. Tiny objects detection method for unmanned aerial vehicle ship images based on STOD [J]. Systems Engineering and Electronics, 2025, 47(11): 3559-3567. |
| [2] | Weihong FU, Wenhong PENG, Naian LIU. SAR image small target detection method with hybrid attention optimization [J]. Systems Engineering and Electronics, 2025, 47(8): 2519-2526. |
| [3] | Chongyu PAN, Jian HUANG, Jianguo HAO, Jianxing GONG, Zhongjie ZHANG. Survey of weakly supervised learning integrating zero-shot and few-shot learning [J]. Systems Engineering and Electronics, 2020, 42(10): 2246-2256. |
| [4] | LIU Bin, FU Zhongwang. Multi-focus image fusion based on four-channel non-separable lifting wavelet [J]. Systems Engineering and Electronics, 2018, 40(2): 463-471. |
| [5] | WU Xiao-yan, CHEN Song-can. Online kernel fuzzy C-means clustering algorithm [J]. Journal of Systems Engineering and Electronics, 2012, 34(12): 2599-2606. |
| [6] | DONG Guang-hui, XI Zhi-hong , ZHAO Yan-qing. C-V level set image segmentation based on cultural algorithm [J]. Journal of Systems Engineering and Electronics, 2012, 34(7): 1499-1504. |
| [7] | ZHAO Wen-zhe, QIN Shi-yin. Chromatic image classification and recognition based on interest point features [J]. Journal of Systems Engineering and Electronics, 2011, 33(2): 438-442. |
| [8] | LIU Gang, LIANG Xiao-geng, ZHANG Jing-guo. Contourlet transform and improved fuzzy c-means clustering based infrared image segmentation [J]. Journal of Systems Engineering and Electronics, 2011, 33(2): 443-448. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||