Systems Engineering and Electronics ›› 2025, Vol. 47 ›› Issue (10): 3270-3277.doi: 10.12305/j.issn.1001-506X.2025.10.14
• Systems Engineering • Previous Articles
Bo SUN1,2, Tongshu LIN1, Zeyu WU1,2,*, Cheng QIAN1,2, Junlin PAN1, Leyang ZHOU1, Keming DONG3
Received:2024-09-23
Online:2025-10-25
Published:2025-10-23
Contact:
Zeyu WU
CLC Number:
Bo SUN, Tongshu LIN, Zeyu WU, Cheng QIAN, Junlin PAN, Leyang ZHOU, Keming DONG. SOC estimation method for lithium-ion batteries based on degradation injected field-circuit coupling model[J]. Systems Engineering and Electronics, 2025, 47(10): 3270-3277.
Table 1
Introduction to dataset operating conditions"
| 工况名称 | 工况介绍 |
| 随机充/放电 | 从−4.5 A,−3.75 A,−3 A,−2.25 A,−1.5 A,−0.75 A,0.75 A,1.5 A,2.25 A,3 A,3.75 A,4.5 A中随机选择充电或放电电流, 直到电池电压达到3.2 V或4.2 V,或充放电持续5 min |
| 随机充/放电后休息 | 小于1 s,用于选择新的充电或放电电流大小 |
| 参考充/放电 | 用于获取每 |
| 脉冲充/放电 | 用于获取每 |
| 脉冲充/放电后休息 | 休息20 min,用于观察脉冲结束后电压的回弹情况 |
| 低电流放电 | 使用0.04 A的低电流放电,用于获取电池开路电压与SOC的关系 |
Table 2
Parameters of multi physics field model"
| 参数属性 | 参数名称 | 取值 |
| 几何参数 | 电池高度/mm | 65 |
| 电池半径/mm | 9 | |
| 材料参数 | 导热系数/( | |
| 恒压热容/( | ||
| 密度/( | ||
| 边界条件 | 入口速度/( | 0.5 |
| 出口压强/atm | 1 | |
| 环境温度/°C | 25 |
| 1 |
WANG Y J, ZHANG X C, LI K Q, et al. Perspectives and challenges for future lithium-ion battery control and management[J]. eTransportation, 2023, 18, 100260.
doi: 10.1016/j.etran.2023.100260 |
| 2 |
RUAN H K, HE H W, QUAN Z Y, et al. State of health estimation of lithium-ion battery based on constant-voltage charging reconstruction[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2023, 11 (4): 4393- 4402.
doi: 10.1109/JESTPE.2021.3098836 |
| 3 |
YU Z H, TIAN Y, LI B H. A simulation study of Li-ion batteries based on a modified P2D model[J]. Journal of Power Sources, 2024, 618, 234376.
doi: 10.1016/j.jpowsour.2024.234376 |
| 4 |
LI J, ADEWUYI K, LOTFI N, et al. A single particle model with chemical/mechanical degradation physics for lithium ion battery state of health (SOH) estimation[J]. Applied Energy, 2018, 212, 1178- 1190.
doi: 10.1016/j.apenergy.2018.01.011 |
| 5 |
WANG Z, SHEN J R, XU Y. State-of-charge estimation for lithium-ion battery base on adaptive extended sliding innovation filter[J]. Energies, 2024, 17 (14): 3495.
doi: 10.3390/en17143495 |
| 6 |
ZHOU H, WANG S L, YU C M, et al. Research on SOC estimation for lithium ion batteries based on improved PNGV equivalence model and AF-UKF algorithm[J]. International Journal of Electrochemical Science, 2022, 17 (8): 220836.
doi: 10.20964/2022.08.31 |
| 7 |
LI Y G, QI H Z, SHI X L, et al. A physics-based equivalent circuit model and state of charge estimation for lithium-ion batteries[J]. Energies, 2024, 17 (15): 3782.
doi: 10.3390/en17153782 |
| 8 |
TIAN E G, CHEN H, WANG C S, et al. Security-ensured state of charge estimation of lithium-ion batteries subject to malicious attacks[J]. IEEE Trans. on Smart Grid, 2023, 14 (3): 2250- 2261.
doi: 10.1109/TSG.2022.3202811 |
| 9 |
HOW D N T, HANNAN M A, HOSSAIN LIPU M S, et al. State of charge estimation for lithium-ion batteries using model-based and data-driven methods: a review[J]. IEEE Access, 2019, 7, 136116- 136136.
doi: 10.1109/ACCESS.2019.2942213 |
| 10 |
WANG M D, JIA P, WEI W Q, et al. Electro-thermal coupling modeling of energy storage station considering battery physical characteristics[J]. Frontiers in Energy Research, 2024, 12, 1433797.
doi: 10.3389/fenrg.2024.1433797 |
| 11 |
TABINE A, LAADISSI E M, ELACHHAB A, et al. Innovative method to precise SOC estimation for lithium-ion batteries under diverse temperature and current conditions[J]. International Journal of Hydrogen Energy, 2024, 96, 1299- 1309.
doi: 10.1016/j.ijhydene.2024.11.385 |
| 12 |
蔡忠义, 王泽洲, 张晓丰, 等. 隐含非线性退化设备的剩余寿命在线预测方法[J]. 系统工程与电子技术, 2020, 42 (6): 1410- 1416.
doi: 10.3969/j.issn.1001-506X.2020.06.27 |
|
CAI Z Y, WANG Z Z, ZHANG X F, et al. Online prediction method of remaining useful lifetime for implicit nonlinear degradation equipment[J]. Systems Engineering and Electronics, 2020, 42 (6): 1410- 1416.
doi: 10.3969/j.issn.1001-506X.2020.06.27 |
|
| 13 |
YU H Q, CAO M D, LIU Y J, et al. A fusion method for capacity estimation of fast-charging lithium-ion battery under varied degradation mode[J]. Journal of Energy Storage, 2023, 73, 109145.
doi: 10.1016/j.est.2023.109145 |
| 14 |
LYU D Z, ZHANG B, LIU E H, et al. Prognosis-enabled battery SOC estimation using a closed-loop approach with consideration of SOH degradation[J]. Journal of Energy Storage, 2025, 106, 113713.
doi: 10.1016/j.est.2024.113713 |
| 15 |
HUANG K, LV Z T, YAO K X, et al. Co-estimation of maximum available capacity and state-of-charge for lithium-ion batteries in multi-operating mode with temperature and degradation state adaptivity[J]. Measurement, 2024, 225, 114019.
doi: 10.1016/j.measurement.2023.114019 |
| 16 |
朱卫平, 陈国旺, 卫志农, 等. 基于VFFRLS算法的锂电池参数辨识[J]. 电力工程技术, 2023, 42 (1): 226- 233.
doi: 10.12158/j.2096-3203.2023.01.027 |
|
ZHU W P, CHEN G W, WEI Z N, et al. Parameter identification of lithium-ion battery based on least squares algonithm with variable forgetting factor[J]. Electric Power Engineering Technology, 2023, 42 (1): 226- 233.
doi: 10.12158/j.2096-3203.2023.01.027 |
|
| 17 |
LI J L, PENG Y C, WANG Q, et al. Status and prospects of research on lithium-ion battery parameter identification[J]. Batteries, 2024, 10 (6): 194.
doi: 10.3390/batteries10060194 |
| 18 |
SHRIVASTAVA P, SOON T K, IDRIS M Y I B, et al. Overview of model-based online state-of-charge estimation using Kalman filter family for lithium-ion batteries[J]. Renewable and Sustainable Energy Reviews, 2019, 113, 109233.
doi: 10.1016/j.rser.2019.06.040 |
| 19 | 潘海鸿, 张沫, 王惠民, 等. 基于多影响因素建立锂离子电池充电内阻的动态模型[J]. 电工技术学报, 2021, 36 (10): 2199- 2206. |
| PAN H H, ZHANG M, WANG H M, et al. Establishing a dynamic model of lithium-ion battery charging internal resistance based on multiple factors[J]. Transactions of China Electrotechnical Society, 2021, 36 (10): 2199- 2206. | |
| 20 |
AN Q, PENG J. Parameter identification of lithium battery pack based on novel cooperatively coevolving differential evolution algorithm[J]. Renewable Energy, 2023, 216, 119036.
doi: 10.1016/j.renene.2023.119036 |
| 21 |
LUCAFERRI V, QUERCIO M, LAUDANI A, et al. A review on battery model-based and data-driven methods for battery management systems[J]. Energies, 2023, 16 (23): 7807.
doi: 10.3390/en16237807 |
| 22 |
ZHANG R F, XIA B Z, LI B H, et al. State of the art of lithium-ion battery SOC estimation for electrical vehicles[J]. Energies, 2018, 11 (7): 1820.
doi: 10.3390/en11071820 |
| 23 |
WANG L B, LI J P, CHEN J Y, et al. Revealing the internal short circuit mechanisms in lithium-ion batteries upon dynamic loading based on multiphysics simulation[J]. Applied Energy, 2023, 351, 121790.
doi: 10.1016/j.apenergy.2023.121790 |
| 24 |
LIU J, YADAV S, SALMAN M, et al. Review of thermal coupled battery models and parameter identification for lithium-ion battery heat generation in EV battery thermal management system[J]. International Journal of Heat and Mass Transfer, 2024, 218, 124748.
doi: 10.1016/j.ijheatmasstransfer.2023.124748 |
| 25 |
BERNARDI D, PAWLIKOWSKI E, NEWMAN J. A general energy- balance for battery systems[J]. Journal of the Electrochemical Society, 1985, 132 (1): 5- 12.
doi: 10.1149/1.2113792 |
| 26 |
方安然, 李旦, 张建秋. 异常值和未知观测噪声鲁棒的卡尔曼滤波器[J]. 系统工程与电子技术, 2021, 43 (3): 593- 602.
doi: 10.12305/j.issn.1001-506X.2021.03.01 |
|
FANG A R, LI D, ZHANG J Q. Outlier and unknown observation noise robust Kalman filter[J]. Systems Engineering and Electronics, 2021, 43 (3): 593- 602.
doi: 10.12305/j.issn.1001-506X.2021.03.01 |
|
| 27 |
MONIRUL I M, QIU L, RUBY R, et al. Accurate SOC estimation in power lithium-ion batteries using adaptive extended Kalman filter with a high-order electrical equivalent circuit model[J]. Measurement, 2025, 249, 117081.
doi: 10.1016/j.measurement.2025.117081 |
| 28 | 陈大豪, 程志君, 钟健, 等. 定量和定性因子混合的罚盲克里金模型[J]. 系统工程与电子技术, 2025, 47 (1): 153- 163. |
| CHEN D H, CHENG Z J, ZHONG J, et al. Penalty blind Kriging model with quantitative and qualitative factors[J]. Systems Engineering and Electronics, 2025, 47 (1): 153- 163. | |
| 29 | BOLE B, KULKARNI C S, DAIGLE M. Adaptation of an electrochemistry-based li-ion battery model to account for deterioration observed under randomized use[C]//Proc. of the Annual Conference of the Prognostics and Health Management Society, 2014. |
| 30 | 李堂, 黄康, 毛行奎, 等. 基于EKF算法的动力锂离子电池SOC估计[J]. 电器与能效管理技术, 2023, (9): 62- 68,75. |
| LI T, HUANG K, MAO X K, et al. SOC estimation of power lithium-ion battery based on EKF algorithm[J]. Electrical & Energy Management Technology, 2023, (9): 62- 68,75. | |
| 31 |
CHEN G X, PENG W W, YANG F F. An LSTM-SA model for SOC estimation of lithium-ion batteries under various temperatures and aging levels[J]. Journal of Energy Storage, 2024, 84, 110906.
doi: 10.1016/j.est.2024.110906 |
| [1] | Ran ZHANG, Tianyu LIU, Guang JIN. Remaining useful life prediction of lithium-ion batteries based on Gaussian process regression with self-constructed kernel [J]. Systems Engineering and Electronics, 2023, 45(8): 2623-2633. |
| [2] | Jia LIU, Kewei YANG, Jiang JIANG, Boyuan XIA. Parameter estimation method of equipment system based on multi-fidelity surrogate model [J]. Systems Engineering and Electronics, 2021, 43(1): 130-137. |
| [3] | LI Xiang, WANG Xiao-peng. Study on shape parameter selection for surrogate model -constructed by using radial basis function [J]. Systems Engineering and Electronics, 2015, 37(3): 688-692. |
| [4] | LI Jun-qiao, TANG Jun, SUN Pei-lin, XU Jian-feng. Simulation method of system of systems based on stochastic statecharts [J]. Systems Engineering and Electronics, 2013, 35(10): 2208-2213. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||