Systems Engineering and Electronics ›› 2025, Vol. 47 ›› Issue (1): 62-69.doi: 10.12305/j.issn.1001-506X.2025.01.07
• Sensors and Signal Processing • Previous Articles Next Articles
Zhikang JI, Zinan ZHOU, Xuanpeng LI
Received:
2024-03-06
Online:
2025-01-21
Published:
2025-01-25
Contact:
Xuanpeng LI
CLC Number:
Zhikang JI, Zinan ZHOU, Xuanpeng LI. Self-constrained search density based clustering algorithm for radar signal sorting[J]. Systems Engineering and Electronics, 2025, 47(1): 62-69.
Table 1
Radar parameter setting"
参数 | 雷达型号 | 干扰 | ||||
1 | 2 | 3 | 4 | 5 | ||
PRI/μs | 750/800/850/900/950/1 000 | 400 | 1 200 ~ 1 300 | 2 200 ~ 2 450 | 500 | - |
PRI调制 | 脉组参差 | 固定 | 抖动 | 抖动 | 固定 | - |
PW/μs | 9.20 ~ 14.20 | 14.60 | 11.00 | 13.50 ~ 15.50 | 15.00 ~ 20.20 | - |
RF/MHz | 6 250 ~ 6 450 | 5 000 ~ 6 000 | 5 800 | 6 800 ~ 7 000 | 6 400/6 500/6 450/6 300 | - |
RF调制 | 捷变 | 捷变 | 固定 | 捷变 | 跳变 | - |
DOA/(°) | 41 ~ 44 | 38 ~ 45 | 40 ~ 41 | 42 ~ 45 | 43 ~ 44 | - |
脉冲数/个 | 390 | 150 | 480 | 270 | 210 | 400 |
Table 2
Algorithm detection rate comparison"
算法 | 雷达型号 | 干扰信号 | 总检出率 | ||||
1 | 2 | 3 | 4 | 5 | |||
DBSCAN | 0.962 | 0.380 | 0.998 | 0.992 | 0.934 | 0.827 | 0.853 |
OPTICS | 0.956 | 0.320 | 0.997 | 0.994 | 0.904 | 0.741 | 0.832 |
DPC | 0.942 | 0.103 | 0.906 | 0.968 | 0.937 | 0.673 | 0.771 |
BIRCH | 0.160 | 0.000 | 0.98 | 0.982 | 0.457 | 0.000 | 0.516 |
K-means | 0.213 | 0.943 | 0.957 | 0.000 | 0.944 | 0.000 | 0.611 |
本文算法 | 0.976 | 0.983 | 0.989 | 0.994 | 0.958 | 0.965 | 0.981 |
1 |
WAN L T , LIU R , SUN L , et al. UAV swarm based radar signal sorting via multi-source data fusion: a deep transfer learning framework[J]. Information Fusion, 2022, 78, 90- 101.
doi: 10.1016/j.inffus.2021.09.007 |
2 | CHI K , SHEN J H , LI Y , et al. Multi-function radar signal sorting based on complex network[J]. IEEE Signal Processing Letters, 2020, 28, 91- 95. |
3 | ZHAO S Q , WANG W H , ZENG D G , et al. A novel aggregated multipath extreme gradient boosting approach for radar emitter classification[J]. IEEE Trans.on Industrial Electronics, 2021, 69 (1): 703- 712. |
4 | CAMPBELL J W , SAPERSTEIN S . Signal recognition in complex radar environments[J]. Electronic, 1976, 3 (6): 8. |
5 |
JIA J W , HAN Z Z , LIU L M , et al. Research on the SDIF fai-lure principle for RF stealth radar signal design[J]. Electronics, 2022, 11 (11): 1777.
doi: 10.3390/electronics11111777 |
6 | ZHANG C J , LIU Y C , SI W J . Synthetic algorithm for deinter leaving radar signals in a complex environment[J]. IET Radar, Sonar & Navigation, 2020, 14 (12): 1918- 1928. |
7 | 隋金坪, 刘振, 刘丽, 等. 雷达辐射源信号分选研究进展[J]. 雷达学报, 2022, 11 (3): 418- 433. |
SUI J P , LIU Z , LIU L , et al. Progress in radar emitter signal deinterleaving[J]. Journal of Radars, 2022, 11 (3): 418- 433. | |
8 | YANG S Y , ZHAO X Y , LIU H L , et al. Deep contrastive clustering for signal deinterleaving[J]. IEEE Trans.on Aerospace and Electronic Systems, 2023, 60 (1): 252- 263. |
9 | KANG K , ZHANG Y X , GUO W P , et al. Key radar signal sorting and recognition method based on clustering combined with PRI transform algorithm[J]. Journal of Artificial Intelligence and Technology, 2022, 2 (2): 62- 68. |
10 | ESTER M, KRIEGEL H P, SANDER J, et al. A density-based algorithm for discovering clusters in large spatial databa-ses with noise[C]//Proc. of the 2nd International Conference on Knowledge Discovery and Data Mining, 1996: 226-231. |
11 | LANG P , FU X J , CUI Z D , et al. Subspace decomposition based adaptive density peak clustering for radar signals sorting[J]. IEEE Signal Processing Letters, 2021, 29, 424- 428. |
12 |
JIAN W , SONG W M . A new radar signal sorting method based on data field[J]. Applied Mechanics and Materials, 2014, 610, 401- 406.
doi: 10.4028/www.scientific.net/AMM.610.401 |
13 |
WEI Z K , GAO Y N , ZHANG X J , et al. Adaptive marine traffic behaviour pattern recognition based on multidimensional dynamic time warping and DBSCAN algorithm[J]. Expert Systems with Applications, 2024, 238, 122229.
doi: 10.1016/j.eswa.2023.122229 |
14 |
陈涛, 刘福悦, 李金鑫, 等. 基于深度分割的端到端雷达信号分选[J]. 系统工程与电子技术, 2023, 45 (5): 1351- 1358.
doi: 10.12305/j.issn.1001-506X.2023.05.11 |
CHEN T , LIU F Y , LI J X , et al. End-to-end radar signal sorting based on deep segmentation[J]. Systems Engineering and Electronics, 2023, 45 (5): 1351- 1358.
doi: 10.12305/j.issn.1001-506X.2023.05.11 |
|
15 |
FAN R Z , ZHU M T , ZHANG X K . Multivariate time series feature extraction and clustering framework for multi-function radar work mode recognition[J]. Electronics, 2024, 13 (8): 1412.
doi: 10.3390/electronics13081412 |
16 |
LANG P , FU X J , DONG J , et al. A novel radar signals sorting method via residual graph convolutional network[J]. IEEE Signal Processing Letters, 2023, 30, 753- 757.
doi: 10.1109/LSP.2023.3287404 |
17 |
ZHAO Y X , FENG H C , JIANG K L , et al. Information fusion for radar signal sorting with the distributed reconnaissance receivers[J]. Remote Sensing, 2023, 15 (15): 3743.
doi: 10.3390/rs15153743 |
18 |
ZHANG Z Z , SHI X R , GUO X Y , et al. TR-RAGCN-AFF-RESS: a method for radar emitter signal sorting[J]. Remote Sensing, 2024, 16 (7): 1121.
doi: 10.3390/rs16071121 |
19 | LI H Q , LI Y L , HE C , et al. Radar working state recognition based on the unsupervised and incremental method[J]. Journal of Sensors, 2021, 2021 (Pt. 7): 8673046. |
20 |
LI P . Research on radar signal recognition based on automatic machine learning[J]. Neural Computing and Applications, 2020, 32 (7): 1959- 1969.
doi: 10.1007/s00521-019-04494-1 |
21 | HAN S D , YAN L J , ZHANG Y X , et al. Adaptive radar detection and classification algorithms for multiple coherent signals[J]. IEEE Trans.on Signal Processing, 2020, 69 (560): 572. |
22 | 司伟建, 张悦, 邓志安. 用于雷达信号分选的连通k近邻聚类算法[J]. 系统工程与电技术, 2023, 45 (8): 2463- 2470. |
SI W J , ZHANG Y , DENG Z A . Connected k-nearest neighbor clustering algorithm for radar signal sorting[J]. Systems Engineering and Electronics, 2023, 45 (8): 2463- 2470. | |
23 |
DADGARNIA A , SADEGHI M T . A novel method of deinter leaving radar pulse sequences based on a modified DBSCAN algorithm[J]. China Communications, 2023, 20 (2): 198- 215.
doi: 10.23919/JCC.2023.02.012 |
24 |
ANKERST M , BREUNIG M M , KRIEGEL H P , et al. OPTICS: ordering points to identify the clustering structure[J]. ACM Sigmod Record, 1999, 28 (2): 49- 60.
doi: 10.1145/304181.304187 |
25 |
WU C X , CHEN Y , DONG Y , et al. VizOPTICS: getting insights into OPTICS via interactive visual analysis[J]. Compu-ters and Electrical Engineering, 2023, 107, 108624.
doi: 10.1016/j.compeleceng.2023.108624 |
26 | SCHUBERT E , SANDER J , ESTER M , et al. DBSCAN revisited, revisited: why and how you should (still) use DBSCAN[J]. ACM Transactions on Database Systems, 2017, 42 (3): 19. |
27 |
DASZY K M , WALCZAK B , MASSART D L . Looking for natural patterns in data: Part 1. density-based approach[J]. Chemometrics and Intelligent Laboratory Systems, 2001, 56 (2): 83- 92.
doi: 10.1016/S0169-7439(01)00111-3 |
28 |
DENG Z , HU Y Y , ZHU M , et al. A scalable and fast OPTICS for clustering trajectory big data[J]. Cluster Computing, 2015, 18, 549- 562.
doi: 10.1007/s10586-014-0413-9 |
29 |
RODRIGUEZ A , LAIO A . Clustering by fast search and find of density peaks[J]. Science, 2014, 344 (6191): 1492- 1496.
doi: 10.1126/science.1242072 |
30 |
ZHANG T , RAMAKRISHNAN R , LIVNY M . BIRCH: an efficient data clustering method for very large databases[J]. ACM Sigmod Record, 1996, 25 (2): 103- 114.
doi: 10.1145/235968.233324 |
31 | WANG Y Z , QIAN J X , HASSAN M , et al. Density peak clustering algorithms: a review on the decade 2014-2023[J]. Expert Systems with Applications, 2023, 238 (A): 121860. |
32 | AL M A , FARHAN A , FENG H C , et al. An intelligent radar signal classification and deinterleaving method with unified residual recurrent neural network[J]. IET Radar, Sonar & Navigation, 2023, 17 (8): 1259- 1276. |
33 |
AL-SAMARA M , BENNIS I , ABOUAISSA A , et al. Complete outlier detection and classification framework for WSNs based on OPTICS[J]. Journal of Network and Computer Applications, 2023, 211, 103563.
doi: 10.1016/j.jnca.2022.103563 |
34 |
DRIAS H , DRIAS Y , HOUACINE N A , et al. Quantum OPTICS and deep self-learning on swarm intelligence algorithms for Covid-19 emergency transportation[J]. Soft Computing, 2023, 27 (18): 13181- 13200.
doi: 10.1007/s00500-022-06946-8 |
[1] | Xiankang SU, Dawei ZHANG, Fang YE. Radar signal sorting method based on hierarchical clustering and spectral adaptation [J]. Systems Engineering and Electronics, 2025, 47(1): 101-108. |
[2] | Jiayi LUO, Xuanpeng LI, Jianghao LI, Qifan XUE, Feng YANG, Weigong ZHANG. Radiation signal sorting method based on PDW multi-feature fusion [J]. Systems Engineering and Electronics, 2024, 46(1): 80-87. |
[3] | Weijian SI, Yue ZHANG, Zhian DENG. Connected k-nearest neighbor clustering algorithm for radar signal sorting [J]. Systems Engineering and Electronics, 2023, 45(8): 2463-2470. |
[4] | Tao CHEN, Fuyue LIU, Jinxin LI, Yu LEI. End-to-end radar signal sorting based on deep segmentation [J]. Systems Engineering and Electronics, 2023, 45(5): 1351-1358. |
[5] | Ce JI, Wenhuan MU, Rong GENG. Underdetermined blind source separation algorithm based on A-DBSCAN [J]. Systems Engineering and Electronics, 2020, 42(12): 2676-2683. |
[6] | ZHANG Yixiao, GUO Wenpu, KANG kai, YAO Yunlong, ZHANG Linke, ZHANG Wei. Radar signal sorting method based on data field combined PRI transform and clustering [J]. Systems Engineering and Electronics, 2019, 41(7): 1509-1515. |
[7] | CHEN Tao, WANG Tianghang, GUO Limin. Sequence searching methods of radar signal pulses based on PRI transform algorithm [J]. Systems Engineering and Electronics, 2017, 39(6): 1261-1267. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||