Systems Engineering and Electronics ›› 2024, Vol. 46 ›› Issue (6): 2073-2081.doi: 10.12305/j.issn.1001-506X.2024.06.25
• Guidance, Navigation and Control • Previous Articles
Baichuan ZHANG, Wenhao BI, An ZHANG, Minghao LI
Received:2023-04-03
Online:2024-05-25
Published:2024-06-04
Contact:
Wenhao BI
CLC Number:
Baichuan ZHANG, Wenhao BI, An ZHANG, Minghao LI. Fast calculation method of aviation bomb trajectory adapted to plateau environment[J]. Systems Engineering and Electronics, 2024, 46(6): 2073-2081.
Table 1
Air bomb trajectory simulation parameter"
| 参数 | 取值 |
| 炸弹弹道系数C | 0.462 859 |
| 战斗机起飞时海拔高度HON/m | 0 |
| 战斗机起飞时大气压强hON/(mmHg) | 750 |
| 战斗机起飞时大气温度TON/K | 288.15 |
| 战斗机起飞时大气湿度RHON | 50% |
| 战斗机投弹时海拔高度H0/m | 2 000~10 000 |
| 战斗机投弹时大气压强h0/(mmHg) | 288.15-6.328×10-3×H0 |
| 战斗机投弹时大气温度T0/K | 760×(1-2.190 5×10-5×H0)5.4 |
| 战斗机投弹时大气湿度RH0 | 50% |
| 战斗机投弹时所处纬度φ | 30 |
| 目标海拔高度Ht/m | 1 000 |
| 战斗机投弹时炸弹速度v0/(km/h) | 800 |
| 战斗机投弹时航向角θ | 0 |
| 步长基准控制参数及步长增量控制参数(a, b, c) | (0.02, 270, 15 000) |
Table 2
Analysis of simulation results of aerial bomb trajectory"
| 参数 | 标准三阶Runge-Kutta | 变步长三阶Runge-Kutta | IRK-UBTC* | ||||||||
| 最小值 | 平均值 | 最大值 | 最小值 | 平均值 | 最大值 | 最小值 | 平均值 | 最大值 | |||
| 射程相对误差/% | 0.390 0 | 3.491 7 | 9.911 0 | 0.476 0 | 3.842 9 | 10.388 0 | 0.167 0 | 0.585 2 | 1.162 0 | ||
| 射程误差/m | 0.011 0 | 14.308 7 | 25.037 0 | 4.572 0 | 6.098 5 | 10.258 0 | 0.752 0 | 2.735 4 | 8.645 0 | ||
| 下落时间误差/s | 0.017 0 | 0.104 4 | 0.124 0 | 0.105 0 | 0.116 7 | 0.146 0 | 0.010 0 | 0.022 5 | 0.051 0 | ||
| 算法运行时长/ms | 3.913 0 | 4.317 7 | 5.373 0 | 1.316 0 | 2.115 2 | 3.115 0 | 2.781 0 | 4.293 9 | 4.919 0 | ||
Table 3
Analysis of results of experiment on plateau"
| 目标海拔高度/m | 目标相对高度/m | 机场大气参数 | 投弹参数 | 传统算法误差/% | 本文算法误差/% | ||||||||
| 温度/K | 湿度/% | 气压/mmHg | 高度/m | 温度/K | 湿度/% | 气压/mmHg | 高度/m | 真空速度/(km/h) | |||||
| 4 400 | 1 032 | 283.15 | 50 | 437 | 4 110 | 273.63 | 50 | 382.3 | 5 432 | 601.63 | 1.041 941 | 0.444 573 | |
| 4 336 | 2 034 | 281.15 | 50 | 435.7 | 4 110 | 280.74 | 50 | 336.3 | 6 370 | 605.13 | 2.032 601 | 1.029 315 | |
| 4 394 | 1 036 | 288.15 | 50 | 760 | 0 | 273.63 | 50 | 382.4 | 5 430 | 590.88 | 0.462 543 | 0.286 683 | |
| 4 120 | 5 011 | 288.15 | 50 | 760 | 0 | 246.64 | 50 | 226.1 | 9 131 | 734.88 | 1.749 418 | 1.584 682 | |
| 4 398 | 3 056 | 280.15 | 60 | 435 | 4 110 | 253.15 | 50 | 288.79 | 7 454 | 647.13 | 2.301 516 | 0.547 754 | |
| 4 331 | 5 046 | 280.15 | 60 | 435 | 4 110 | 241.12 | 50 | 217.96 | 9 377 | 742.88 | 3.443 107 | 0.593 857 | |
| 4 303 | 5 082 | 280.15 | 60 | 435 | 4 110 | 240.92 | 50 | 217.69 | 9 385 | 751.125 | 3.167 299 | 0.862 63 | |
| 4 400 | 1 032 | 283.15 | 50 | 437 | 4 110 | 273.63 | 50 | 382.3 | 5 432 | 601.63 | 1.041 941 | 0.444 573 | |
| 4 336 | 2 034 | 281.15 | 50 | 435.7 | 4 110 | 280.74 | 50 | 336.3 | 6 370 | 605.13 | 2.032 601 | 1.029 315 | |
| 1 | SENAY N. The strategic level optimization of air to ground missiles for turkish air force decision support system[R]. Ohio: Wright-Patterson Air Force Base, 2012. |
| 2 | ABOUSEADA H A H A. Modeling, simulating and control of free falling bomb using PID[C]//Proc. of the International Undergraduate Research Conference, 2022. |
| 3 | KOZLOVSKA M , SYBKOVA H , OTAHAL P P . Radiation monitoring after experimental dirty bomb explosion[J]. Radiation Protection Dosimetry, 2023, 199 (8/9): 1012- 1020. |
| 4 |
CARPENTER C , MONTGOMERY A H . The stopping power of norms: saturation bombing, civilian immunity, and US attitudes toward the laws of war[J]. International Security, 2020, 45 (2): 140- 169.
doi: 10.1162/isec_a_00392 |
| 5 |
ZHANG A , XU H , BI W H , et al. Adaptive mutant particle swarm optimization based precise cargo airdrop of unmanned ae-rial vehicles[J]. Applied Soft Computing, 2022, 130, 109657.
doi: 10.1016/j.asoc.2022.109657 |
| 6 |
LEONARD A , ROGERS J , GERLACH A . Probabilistic release point optimization for airdrop with variable transition altitude[J]. Journal of Guidance, Control, and Dynamics, 2020, 43 (8): 1487- 1497.
doi: 10.2514/1.G004959 |
| 7 | ATANASOV M . Mathematical model for operation of aviation systems for delivery of special means to air and earth objects[J]. Aerospace Research Bulgaria, 2022, 1 (34): 138- 148. |
| 8 | 王勇亮, 赵成仁, 卢颖. 炸弹空气阻力加速度的仿真与实现[J]. 弹箭与制导学报, 2006, (S1): 251-252, 256. |
| WANG Y L , ZHAO C R , LU Y . Simulation and realization of bomb air drag force acceleration[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2006, 26 (S1): 251-252, 256. | |
| 9 |
SAHU J . Time-accurate numerical prediction of free-flight aerodynamics of a finned projectile[J]. Journal of Spacecraft and Rockets, 2008, 45 (5): 946- 954.
doi: 10.2514/1.34723 |
| 10 | SAHU J. Unsteady aerodynamic simulations of a finned projectile at a supersonic speed with jet interaction[C]//Proc. of the 52nd AIA Aerospace Sciences Meeting, 2014: 3024 |
| 11 | 郝永平, 陈闯, 张嘉易, 等. 固定舵二维修正弹外弹道仿真与动态模拟[J]. 兵工学报, 2018, 39 (4): 67- 76. |
| HAO Y P , CHEN C , ZHANG J Y , et al. Trajectory and dynamic simulations of two-dimensional trajectory correction projectile with fixed canards[J]. Acta Armamentarii, 2018, 39 (4): 67- 76. | |
| 12 | 王莎莎, 张东东, 李新娥, 等. 基于FLUENT和ADAMS的外弹道加速度仿真[J]. 探测与控制学报, 2019, 41 (5): 47- 52. |
| WANG S S , ZHANG D D , LI X E , et al. Exterior trajectory acceleration simulation based on FLUENT and ADAMS[J]. Journal of Detection & Control, 2019, 41 (5): 47- 52. | |
| 13 |
AHMADIANFAR I , HEIDARI A A , GANDOMI A H , et al. RUN beyond the metaphor: an efficient optimization algorithm based on Runge Kutta method[J]. Expert Systems with Applications, 2021, 181, 115079.
doi: 10.1016/j.eswa.2021.115079 |
| 14 |
LI J W , LI X , JU L L , et al. Stabilized integrating factor Runge-Kutta method and unconditional preservation of maximum bound principle[J]. SIAM Journal on Scientific Computing, 2021, 43 (3): 1780- 1802.
doi: 10.1137/20M1340678 |
| 15 |
CHEN H , AHMADIANFAR I , LIANG G , et al. A successful candidate strategy with Runge-Kutta optimization for multi-hydropower reservoir optimization[J]. Expert Systems with Applications, 2022, 209, 118383.
doi: 10.1016/j.eswa.2022.118383 |
| 16 |
QIAO Z L , LI L , ZHAO X C , et al. An enhanced Runge-Kutta boosted machine learning framework for medical diagnosis[J]. Computers in Biology and Medicine, 2023, 160, 106949.
doi: 10.1016/j.compbiomed.2023.106949 |
| 17 |
DIETHELM K , FORD N J , FREED A D . A predictor-corrector approach for the numerical solution of fractional differential equations[J]. Nonlinear Dynamics, 2002, 29 (1/4): 3- 22.
doi: 10.1023/A:1016592219341 |
| 18 | WU G C , WEI J L , LUO C , et al. Parameter estimation of fractional uncertain differential equations via Adams method[J]. Nonlinear Analysis: Modelling and Control, 2022, 27 (3): 413- 427. |
| 19 |
ZABIDI N A , MAJID Z A , KILICMAN A , et al. Numerical solution of fractional differential equations with Caputo derivative by using numerical fractional predict-correct technique[J]. Advances in Continuous and Discrete Models, 2022, 2022 (1): 1- 23.
doi: 10.1186/s13662-021-03638-9 |
| 20 |
ODIBAT Z , ERTURK V S , KUMAR P , et al. Dynamics of generalized Caputo type delay fractional differential equations using a modified predictor-corrector scheme[J]. Physica Scripta, 2021, 96 (12): 125213.
doi: 10.1088/1402-4896/ac2085 |
| 21 | QI Z , LYSTER D . Multi-spline technique for the extraction of drag coeffidents from radar data[J]. Journal of Beijing Institute of Technology, 1994, 3 (1): 33- 42. |
| 22 |
李杰, 马宝华. 迫击炮弹一维射程修正引信技术研究[J]. 兵工学报, 2001, 22 (4): 553- 555.
doi: 10.3321/j.issn:1000-1093.2001.04.031 |
|
LI J , MA B H . Research on one-dimensional range correction fuze technology of mortar shells[J]. Acta Armamentarii, 2001, 22 (4): 553- 555.
doi: 10.3321/j.issn:1000-1093.2001.04.031 |
|
| 23 |
雷晓云, 张志安, 杜忠华. 基于改进无迹卡尔曼滤波的弹道射程修正算法研究[J]. 兵工学报, 2018, 39 (9): 1701- 1710.
doi: 10.3969/j.issn.1000-1093.2018.09.005 |
|
LEI X Y , ZHANG Z A , DU Z H . Ballistic range correction algorithm based on an improved unscented Kalman filter[J]. Acta Armamentarii, 2018, 39 (9): 1701- 1710.
doi: 10.3969/j.issn.1000-1093.2018.09.005 |
|
| 24 |
左军涛, 朱恩成, 黄四牛, 等. 基于GPU的弹道快速计算方法[J]. 火力与指挥控制, 2012, 37 (9): 193- 197.
doi: 10.3969/j.issn.1002-0640.2012.09.052 |
|
ZUO J T , ZHU E C , HUANG S N , et al. Fast calculation method base on GPU for trajectory[J]. Fire Control & Command Control, 2012, 37 (9): 193- 197.
doi: 10.3969/j.issn.1002-0640.2012.09.052 |
|
| 25 | 项帆, 王雨时, 闻泉, 等. 无控弹丸刚体外弹道学应用综述[J]. 探测与控制学报, 2021, 43 (4): 14- 26. |
| XIANG F , WANG Y S , WEN Q , et al. Summary of uncontrolled projectile rigid exterior ballistics application[J]. Journal of Detection & Control, 2021, 43 (4): 14- 26. | |
| 26 | 杨青, 李若, 蔡振宁. 六自由度外弹道方程组的快速数值方法[J]. 高等学校计算数学学报, 2014, 36 (3): 253- 270. |
| YANG Q , LI R , CAI Z N . A fast numercial method for the six degrees of freedom model in the exrernal ballistics[J]. Journal of Computational Mathematics of Colleges and Universities, 2014, 36 (3): 253- 270. | |
| 27 |
丁天宝, 何朝, 王良明, 等. 高速旋转炮弹宽海拔弹道解算方法[J]. 兵工学报, 2021, 42 (1): 209- 213.
doi: 10.3969/j.issn.1000-1093.2021.01.024 |
|
DING T B , HE Z , WANG L M , et al. Calculation method of firing trajectory of high spinning projectile adapted to wide altitude[J]. Acta Armamentarii, 2021, 42 (1): 209- 213.
doi: 10.3969/j.issn.1000-1093.2021.01.024 |
|
| 28 |
赵静, 杜忠华, 赵永平, 等. 基于三次B样条曲线的一维弹道修正弹空气阻力系数拟合[J]. 火力与指挥控制, 2015, 40 (4): 123- 126.
doi: 10.3969/j.issn.1002-0640.2015.04.030 |
|
ZHAO J , DU Z H , ZHAO Y P , et al. Simulation for air resistance coefficient of one-dimension trajectory projectile based on cubic B-spline curve[J]. Fire Control & Command Control, 2015, 40 (4): 123- 126.
doi: 10.3969/j.issn.1002-0640.2015.04.030 |
|
| 29 |
FENRICK W J . Targeting and proportionality during the NATO bombing campaign against Yugoslavia[J]. European Journal of International Law, 2001, 12 (3): 489- 502.
doi: 10.1093/ejil/12.3.489 |
| 30 |
MAHMOUDIAN M , FILHO J , MELICIO R , et al. Three-dimensional performance evaluation of hemispherical coriolis vibratory gyroscopes[J]. Micromachines, 2023, 14 (2): 254.
doi: 10.3390/mi14020254 |
| 31 | 浦发. 航空炸弹的标准落下时间和阻力定律及弹道系数关系问题的探讨[J]. 兵工学报, 1985, (3): 1- 7. |
| PU F . Discussion on the relationship between the standard falling time and the drag law and the ballistic coefficient of air bombs[J]. Acta Armamentarii, 1958, (3): 1- 7. |
| [1] | ZHU An-shi, CHEN Zi-li, LIU Xiao-qian, ZHEN Yun-hui. Numerical calculation on reconfiguration characteristics of plasma antenna [J]. Systems Engineering and Electronics, 2015, 37(3): 515-522. |
| [2] | YANG Bao-hua1,2, FANG Zhi-geng1, ZHANG Ke1. Discrete GM(1,1) model based on sequence of stepwise ratio [J]. Journal of Systems Engineering and Electronics, 2012, 34(4): 715-718. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||