Systems Engineering and Electronics ›› 2024, Vol. 46 ›› Issue (6): 2034-2043.doi: 10.12305/j.issn.1001-506X.2024.06.21
• Systems Engineering • Previous Articles
Bo FAN1, Jilong ZHONG1, Lixia XU1, Xiaoxuan LYU2, Yizhe WANG2, Yu LIU2, Xinwen HOU2,*
Received:
2023-03-23
Online:
2024-05-25
Published:
2024-06-04
Contact:
Xinwen HOU
CLC Number:
Bo FAN, Jilong ZHONG, Lixia XU, Xiaoxuan LYU, Yizhe WANG, Yu LIU, Xinwen HOU. Index allocation method for unmanned swarm confrontation evaluation based on causal entropy[J]. Systems Engineering and Electronics, 2024, 46(6): 2034-2043.
Table 1
Evaluation index system of unmanned swarm air-ground collaborative roundup"
一级评估指标 | 二级评估指标 | 三级评估指标 | 三级评估指标说明 |
生存性 | 抗毁性 | 集群抗毁能力X1 | 反映红方受到攻击后的抗毁能力 |
集群可靠性X2 | 反映红方受到攻击后仍保持原有结构的能力 | ||
集群稳定性X3 | 反映红方受到攻击后的稳定程度 | ||
自恢复性 | 集群自恢复能力X4 | 反映红方受到攻击后恢复稳定的能力 | |
适用性 | 环境适应性 | 空地协同环境适应能力X5 | 反映红方的环境适应度 |
任务适应性 | 空地协同任务适应能力X6 | 反映红方实现预期任务的能力 | |
作战效能 | 作战能力 | 平均度X7 | 反映红方的内部连通能力 |
平均路径长度X8 | 反映红方的联络支援距离 | ||
谱半径X9 | 反映红方各算子之间的联络能力 | ||
自然连通度X10 | 反映红方的整体稳定程度 | ||
节点度X11 | 反映与红方直接相连的其他算子的数量 | ||
介数X12 | 反映红方某个算子的重要程度 | ||
接近度X13 | 反映红方某个算子到集群中心的接近程度 | ||
聚集系数X14 | 反映红方某个算子附近的集聚程度 | ||
作战效果 | 综合对抗能力X15 | 反映红方在对抗中的综合实力比值 | |
机动穿插能力X16 | 反映红方在对抗中机动距离的比值 | ||
目标打击能力X17 | 反映红方在对抗中的火力打击命中率 | ||
毁伤歼敌能力X18 | 反映红方在对抗中歼灭蓝方的比例 | ||
战场生存能力X19 | 反映红方在对抗中的兵力生存比例 | ||
红方地面兵力打击效果X20 | 反映红方在对抗中地面兵力的打击效果 | ||
红方空中兵力打击效果X21 | 反映红方在对抗中空中兵力的打击效果 | ||
对蓝方地面兵力打击效果X22 | 反映红方在对抗中对蓝方地面兵力的打击效果 | ||
对蓝方空中兵力打击效果X23 | 反映红方在对抗中对蓝方空中兵力的打击效果 | ||
资源代价 | 地面兵力资源代价X24 | 反映红方在对抗中的地面兵力资源消耗 | |
空中兵力资源代价X25 | 反映红方在对抗中的空中兵力资源消耗 | ||
地面弹药资源代价X26 | 反映红方在对抗中地面兵力的弹药资源消耗 | ||
空中弹药资源代价X27 | 反映红方在对抗中空中兵力的弹药资源消耗 | ||
作战效率 | 红方地面兵力时间效率X28 | 反映红方地面兵力从发现蓝方兵力到对其发起攻击的时间的综合时效 | |
红方空中兵力时间效率X29 | 反映红方空中兵力从发现蓝方兵力到对其发起攻击的时间的综合时效 | ||
对蓝方地面兵力打击时间效率X30 | 反映红方兵力从发现蓝方地面兵力到对其发起攻击的时间的综合时效 | ||
对蓝方空中兵力打击时间效率X31 | 反映红方兵力从发现蓝方空中兵力到对其发起攻击的时间的综合时效 |
Table 2
Causal entropy results"
评估指标 | 因采熵结果 | 评估指标 | 因采熵结果 | |
X1 | 4.23 | X17 | 4.16 | |
X2 | 4.22 | X18 | 4.05 | |
X3 | 4.08 | X19 | 4.26 | |
X4 | 4.08 | X20 | 4.07 | |
X5 | 4.06 | X21 | 4.12 | |
X6 | 4.06 | X22 | 4.49 | |
X7 | 4.19 | X23 | 4.03 | |
X8 | 4.20 | X24 | 4.08 | |
X9 | 4.09 | X25 | 4.50 | |
X10 | 4.15 | X26 | 4.26 | |
X11 | 4.15 | X27 | 4.01 | |
X12 | 4.13 | X28 | 4.16 | |
X13 | 4.01 | X29 | 4.13 | |
X14 | 4.12 | X30 | 4.22 | |
X15 | 2.32 | X31 | 4.03 | |
X16 | 4.14 | - | - |
1 | 赵东波, 岳凡. 陆军智能化无人化作战体系构建[J]. 国防科技, 2019, 40 (5): 51- 54. |
ZHAO D B , YUE F . Analysis on the construction mode of intelligent unmanned operational system of the army[J]. National Defense Technology, 2019, 40 (5): 51- 54. | |
2 | 刘箴, 吴馨远, 许洁心. 无人机集群作战系统的新发展及趋势分析[J]. 弹箭与制导学报, 2022, 42 (6): 32- 45. |
LIU Z , WU X Y , XU J X . New development and trend analysis of UAV swarming operation system[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2022, 42 (6): 32- 45. | |
3 | 张斌, 付东. 智能无人作战系统的发展[J]. 科技导报, 2018, 36 (12): 71- 75. |
ZHANG B , FU D . Development of intelligent unmanned combat system[J]. Science & Technology Review, 2018, 36 (12): 71- 75. | |
4 |
李松, 张春华, 孙煜飞, 等. 美军无人系统跨域协同作战能力发展研究[J]. 中国电子科学研究院学报, 2023, 18 (3): 284- 288.
doi: 10.3969/j.issn.1673-5692.2023.03.013 |
LI S , ZHANG C H , SUN Y F , et al. Development of U. S. armed forces's unmanned systems cross-domain collaborative combat capability[J]. Jouranl of China Academy of Electronics and Information Technology, 2023, 18 (3): 284- 288.
doi: 10.3969/j.issn.1673-5692.2023.03.013 |
|
5 |
陈顶, 钱晓超, 汪敏, 等. 基于灰色主成分分析的体系效能评估指标筛选[J]. 系统仿真技术, 2022, 18 (4): 336- 340.
doi: 10.3969/j.issn.1673-1964.2022.04.017 |
CHEN D , QIAN X C , WANG M , et al. Index screening of system effectiveness evaluation based on grey principal component analysis[J]. System Simulation Technology, 2022, 18 (4): 336- 340.
doi: 10.3969/j.issn.1673-1964.2022.04.017 |
|
6 | 汪庆雷, 黄宏伟, 高强. 基于层次分析法的导弹发射车测试性指标分配方法研究[J]. 质量与可靠性, 2022, (1): 54- 58. |
WANG Q L , HUANG H W , GAO Q . Research on the allocation method of testability index of missile launch vehicles based on AHP[J]. Quality and Reliability, 2022, (1): 54- 58. | |
7 |
柳平, 延黎, 刘东亮, 等. 基于主客观组合赋权的PSSA安全性指标分配方法[J]. 火力与指挥控制, 2019, 44 (12): 127- 131.
doi: 10.3969/j.issn.1002-0640.2019.12.025 |
LIU P , YAN L , LIU D L , et al. The PSSA security index allocation method based on the subjective and objective combination weighting[J]. Fire Control & Command Control, 2019, 44 (12): 127- 131.
doi: 10.3969/j.issn.1002-0640.2019.12.025 |
|
8 |
LIU G F , ZHANG C , ZHU Z Y , et al. Power quality assessment based on rough AHP and extension analysis[J]. Energy Engineering, 2022, 119 (3): 929- 946.
doi: 10.32604/ee.2022.014816 |
9 |
QU S , ZHENG Y , YAN H , et al. Operational effectiveness evaluation of antimissile early warning based on combination weighted TOPSIS[J]. Journal of Physics: Conference Series, 2021, 1927, 012007.
doi: 10.1088/1742-6596/1927/1/012007 |
10 |
SELVARAJU R R , COGSWELL M , DAS A , et al. Grad-CAM: visual explanations from deep networks via gradient-based localization[J]. International Journal of Computer Vision, 2020, 128 (2): 336- 359.
doi: 10.1007/s11263-019-01228-7 |
11 | SHRIKUMAR A, GREENSIDE P, KUNDAJE A. Learning important features through propagating activation differences[C]//Proc. of the 34th International Conference on Machine Learning, 2017. |
12 | RIBEIRO M T, SAMEER S, CARLOS G. "Why should I trust you?" explaining the predictions of any classifier[C]//Proc. of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2016. |
13 | DENG H Q, ZOU N, DU M N, et al. Understanding and unifying fourteen attribution methods with taylor interactions[EB/OL]. [2023-02-28]. https://arxiv.org/abs/2303.01506. |
14 | ZHANG H, XIE Y C, ZHENG L J, et al. Interpreting multivariate Shapley interactions in DNNs[EB/OL]. [2023-02-28]. https://arxiv.org/abs/2010.05045. |
15 |
LIVERMAN D , HANSON M , BROWN B , et al. Global sustainability: toward measurement[J]. Environmental Management, 1988, 12 (2): 133- 143.
doi: 10.1007/BF01873382 |
16 |
PEI Y S , JING H G , QI G S . Construction of the quality eva-luation index system of MOOC platforms based on the user perspective[J]. Sustainability, 2021, 13 (20): 11163.
doi: 10.3390/su132011163 |
17 |
张维群. 指标体系构建与优良性评价的方法研究[J]. 统计与信息论坛, 2006, 21 (6): 36- 38.
doi: 10.3969/j.issn.1007-3116.2006.06.007 |
ZHANG W Q . A study on the method of evaluation of indicators system construction and goodness[J]. Statistics and Information Forum, 2006, 21 (6): 36- 38.
doi: 10.3969/j.issn.1007-3116.2006.06.007 |
|
18 | CHENG L G . Construction and analysis of evaluation index system of college students' online learning based on analytic hierarchy processes[J]. International Journal of Information Systems in the Service Sector, 2022, 14 (3): 1- 17. |
19 |
HAN Y M , LIU T L , LI Y , et al. Construction of intelligent weapon system effectiveness evaluation index system based on Delphi method[J]. Journal of Physics Conference Series, 2020, 1570 (1): 012049.
doi: 10.1088/1742-6596/1570/1/012049 |
20 |
QI Z Y , ZHANG Y Y , FANG L Q , et al. Research on effectiveness evaluation method of weapon system based on cloud model[J]. Journal of Physics: Conference Series, 2021, 1965, 012005.
doi: 10.1088/1742-6596/1965/1/012005 |
21 | PEARL J . Causal inference in statistics: an overview[J]. Statistics Surveys, 2009, 3, 96- 146. |
22 | PEARL J , MACKENZIE D . The book of why: the new science of cause and effect[J]. Science, 2018, 361 (6405): 852- 855. |
23 | 马忠贵, 徐晓晗, 刘雪儿. 因果推断三种分析框架及其应用综述[J]. 工程科学学报, 2022, 44 (7): 1231- 1243. |
MA Z G , XU X H , LIU X E . Three analytical frameworks of causal inference and their applications[J]. Chinese Journal of Engineering, 2022, 44 (7): 1231- 1243. | |
24 | 英乃文, 苗旺, 耿直. 因果作用评价与因果关系发现[J]. 军事运筹与评估, 2022, 37 (3): 10- 19. |
YING N W , MIAO W , GENG Z . Causal evaluation and causality discovery[J]. Military Operations Research and Assessment, 2022, 37 (3): 10- 19. | |
25 |
ZHAI Y , YANG B , XI Z J . Belavkin-Staszewski relative entropy, conditional entropy, and mutual information[J]. Entropy, 2022, 24 (6): 837- 837.
doi: 10.3390/e24060837 |
26 | KITTANEH O A . The conditional average entropies[J]. Communications in Statistics-Theory and Methods, 2020, 50 (24): 6256- 6263. |
27 | SUHR D. The basics of structural equation modeling[EB/OL]. [2023-03-10]. https://www.lexjansen.com/wuss/2006/tutoria1s/TUT-Suhr.pdf. |
28 |
TAIKI T , MANABU K . An unbiased estimator of the causal effect on the variance based on the back-door criterion in Gaussian linear structural equation models[J]. Journal of Multivariate Analysis, 2023, 197, 105201.
doi: 10.1016/j.jmva.2023.105201 |
29 | RUBIN D B . Direct and indirect causal effects via potential outcomes[J]. Scandinavian Journal of Statistics, 2010, 31 (2): 161- 170. |
30 | PEARL J. Causality: models, reasoning, and inference[M]. 2nd ed. New York: Cambridge University Press, 2009. |
31 | WANG T, HUANG J Q, ZHANG H W, et al. Visual commonsense R-CNN[C]//Proc. of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2020. |
32 | YANG X, ZHANG H W, QI G J, et al. Causal attention for vision-language task[C]//Proc. of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2021. |
33 | ABDULLAH F , GHADI Y Y , GOCHOO M , et al. Multi-person tracking and crowd behavior detection via particles gradient motion descriptor and improved entropy classifier[J]. Multidisciplinary Digital Publishing Institute, 2021, 23 (5): 628. |
34 | TU C T T , LAN P P , HIEP X H . Energy-based collaborative filtering recommendation[J]. International Journal of Advanced Computer Science and Applications, 2022, 13 (7): 557- 562. |
35 | WANG S Y , WANG G , FU Q , et al. STABC-IR: an air target intention recognition method based on bidirectional gated recurrent unit and conditional random field with space-time attention mechanism[J]. Chinese Journal of Aeronautics, 2023, 36 (3): 316- 334. |
36 | RIOU D L , CHOPIN N . Noise contrastive estimation: asymptotics, comparison with MC-MLE[J]. Electronic Journal of Statistics, 2018, 12 (2): 3473- 3518. |
37 |
MALHOTRA D , BHATIA R , KUMAR M . Automated selection of web form text field values based on Bayesian inferences[J]. International Journal of Information Retrieval Research, 2023, 13 (1)
doi: 10.4018/IJIRR.318399 |
38 | AUSTIN P C . The iterative bisection procedure: a useful tool for determining parameter values in data-generating processes in Monte Carlo simulations[J]. BMC Medical Research Methodology, 2023, 23, 45. |
39 | SUREIMAN O , MANGERA C M . F-test of overall significance in regression analysis simplified[J]. Journal of the Practice of Cardiovascular Sciences, 2020, 6 (2): 116- 122. |
40 | ALQUIER P . Iterative feature selection in least square regression estimation[J]. Annales De L Institut Henri Poincaré Probabilits Et Statistiques, 2005, 44 (1): 47- 88. |
41 | QIU R S , PAN J F , ZHAO J , et al. Index predigesting method of ELINT system based on MIBARK algorithm[J]. Mathema-tical Problems in Engineering, 2020, 2020 (43): 7053062. |
42 | 徐华志, 刘松涛, 冯路为. 基于Vague广义优势关系的雷达侦察效能评估指标约简方法[J]. 中国电子科学研究院学报, 2022, 17 (8): 736- 742. |
XU H Z , LIU S T , FENG L W . A radar reconnaissance effectiveness evaluation index reduction method based on vague's generalized superiority relation-ship[J]. Journal of China Aca-demy of Electronic Sciences, 2022, 17 (8): 736- 742. | |
43 | 翟芸, 胡冰, 施端阳. 基于Delphi-TOPSIS法的雷达装备可靠性评估指标约简方法[J]. 舰船电子工程, 2022, 42 (9): 116-121, 135. |
ZHAI Y , HU B , SHI D Y . A reduction method for radar equipment reliability evaluation index based on Delphi-TOPSIS method[J]. Ship Electronic Engineering, 2022, 42 (9): 116-121, 135. | |
44 | 刘丽莉. 评价指标选取方法研究[J]. 河北建筑工程学院学报, 2004, (1): 134- 136. |
LIU L L . The selective method of evaluation index[J]. Journal of Hebei Institute of Architecture and Engineering, 2004, (1): 134- 136. | |
45 | SZABO Z, LORINCZ A. Real and complex independent subspace analysis by generalized variance[EB/OL]. [2023-02-25]. https://arxiv.org/abs/math/0610438. |
[1] | Jiapeng LYU, Xianjun SHI, Liang QIN, Chaolun ZHAO. Research on fault propagation path identification method based on causality [J]. Systems Engineering and Electronics, 2023, 45(12): 4090-4100. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||