Systems Engineering and Electronics ›› 2021, Vol. 43 ›› Issue (12): 3439-3451.doi: 10.12305/j.issn.1001-506X.2021.12.04
• Electronic Technology • Previous Articles Next Articles
Xu CAO, Huanxin ZOU*, Fei CHENG, Runlin LI, Shitian HE
Received:
2020-12-09
Online:
2021-11-24
Published:
2021-11-30
Contact:
Huanxin ZOU
CLC Number:
Xu CAO, Huanxin ZOU, Fei CHENG, Runlin LI, Shitian HE. Aircraft target detection and fine-grained recognition based on RHTC network[J]. Systems Engineering and Electronics, 2021, 43(12): 3439-3451.
Table 1
Fine mask division results of 27 types of aircraft targets"
参数 | 型号 | ||||||||
A-50 | An-12 | An-24 | B-1B | B-2 | B-52 | C-5 | C-17 | C-130 | |
S12 | 398 | 435 | 216 | 879 | 772 | 156 | 1 026 | 1 005 | 163 |
S34 | 31 | 15 | 40 | 21 | 14 | 16 | 44 | 63 | 13 |
参数 | 型号 | ||||||||
E-3 | EP-3 | F-15 | F-16 | Il-76 | KC-10 | KC-135 | MiG-31 | P-8A | |
S12 | 865 | 311 | 256 | 123 | 494 | 1 303 | 244 | 287 | 164 |
S34 | 25 | 4 | 54 | 27 | 22 | 1 | 14 | 1 | 2 |
参数 | 型号 | ||||||||
RC-135S | RQ-4 | Su-24 | Su-27 | Tu-22M | Tu-95 | Tu-160 | Typhoon | 其他 | |
S12 | 460 | 267 | 205 | 353 | 675 | 218 | 863 | 189 | 3 272 |
S34 | 36 | 41 | 3 | 73 | 69 | 6 | 7 | 37 | 34 |
Table 2
The number of 27 types of aircraft target in the original dataset and augmented dataset"
数量类别 | 型号 | ||||||||
A-50 | An-12 | An-24 | B-1B | B-2 | B-52 | C-5 | C-17 | C-130 | |
原始数量 | 75 | 281 | 377 | 43 | 40 | 101 | 116 | 85 | 149 |
扩增数量 | 1 029 | 1 335 | 1 427 | 1 087 | 881 | 1 159 | 984 | 1 188 | 1 621 |
数量类别 | 型号 | ||||||||
E-3 | EP-3 | F-15 | F-16 | Il-76 | KC-10 | KC-135 | MiG-31 | P-8A | |
原始数量 | 36 | 247 | 137 | 85 | 886 | 75 | 202 | 479 | 36 |
扩增数量 | 798 | 2 120 | 1 156 | 1 090 | 1 657 | 1 263 | 1 370 | 1 505 | 1 236 |
数量类别 | 型号 | ||||||||
RC-135S | RQ-4 | Su-24 | Su-27 | Tu-22M | Tu-95 | Tu-160 | Typhoon | 其他 | |
原始数量 | 34 | 9 | 741 | 1 101 | 440 | 189 | 93 | 19 | 2 418 |
扩增数量 | 1 017 | 471 | 1 317 | 1 774 | 2 561 | 870 | 687 | 1 665 | 5 762 |
Table 3
Evaluation for directions detection of six comparison algorithms"
数据集 | 精准度 | 方法 | |||||
FRO[ | ROI transformer[ | RRPN[ | R2CNN[ | RDFPN[ | RHTC | ||
自建数据集 | DP | 25.50 | 46.88 | 47.62 | 43.50 | 37.66 | 79.82 |
AP | 71.08 | 89.56 | 84.25 | 87.20 | 85.63 | 93.53 | |
DOTA | DP | 40.39 | 68.33 | 65.24 | 66.87 | 63.50 | 76.89 |
AP | 73.82 | 86.25 | 80.92 | 85.98 | 81.14 | 87.13 |
Table 4
Specific evaluation for directions detection accuracy of six comparison algorithm"
参数 | 方法 | |||||
RHTC | FRO[ | ROI transformer[ | RRPN[ | R2CNN[ | RDFPN[ | |
Δθmax/(°) | 135.097 | 139.088 | 172.873 | 157.69 | 160.256 | 175.644 |
Δθmedian/(°) | 3.13 | 61.845 | 18.294 | 25.652 | 17.21 | 24.251 |
Δθmean/(°) | 10.587 | 71.083 | 38.904 | 50.334 | 40.603 | 47.247 |
Δθstd/(°) | 23.15 | 55.865 | 46.681 | 52.79 | 48.663 | 51.98 |
1 | 唐小佩, 杨小冈, 刘云峰, 等. 基于深度卷积神经网络的飞机识别研究[J]. 电光与控制, 2018, 25 (5): 72- 76. |
TANG X P , YANG X G , LIU Y F , et al. Research on aircraft recognition based on deep convolutional neural network[J]. Electronics Optics and Control, 2018, 25 (5): 72- 76. | |
2 | MIAO W X, LUO Z. Aircraft detection based on multiple scale faster-RCNN[C]//Proc. of the International Conference on Virtual Reality and Visualization, 2018: 90-93. |
3 |
ZHANG M C , WU X , WANG P . Aircraft recognition via extraction of closed contour and partial feature matching[J]. Computer Simulation, 2006,
doi: 10.1016/S1005-8885(07)60042-9 |
4 | 刘莉, 吴秀清, 牛宗标, 等. 模糊图像中的飞机识别方法[J]. 计算机仿真, 2006, 23 (3): 164- 166. |
LIU L , WU X Q , NIU Z B , et al. Aircraft recognition method in fuzzy image[J]. Computer simulation, 2006, 23 (3): 164- 166. | |
5 | QIU J B , LI S J , WANG W . A new approach to detect aircrafts in remote sensing images based on corner and edge information fusion[J]. Microelectronics & Computer, 2011, 28 (9): 214- 216. |
6 | ZHANG Y X , JIAN H U , ZHANG Z , et al. Research on aircraft recognition based on local detection and affine invariant feature[J]. Remote Sensing Information, 2013, 28 (3): 3- 102. |
7 |
ZHANG F , LIU S Q , WANG D B , et al. Aircraft recognition in infrared image using wavelet moment invariants[J]. Image and Vision Computing, 2009, 27 (4): 313- 318.
doi: 10.1016/j.imavis.2008.08.007 |
8 |
CAI D . Study on aircraft recognition in high spatial resolution remote sensing image based on skeleton characteristics analysis[J]. Advanced Materials Research, 2011, 268-270, 1982- 1985.
doi: 10.4028/www.scientific.net/AMR.268-270.1982 |
9 | LIU G , SUN X , FU K , et al. Aircraft recognition in high-resolution satellite images using coarse-to-fine shape prior[J]. IEEE Geoscience and Remote Sensing Letters, 2012, 10 (3): 573- 577. |
10 |
GUO Z H , LI S H . One-dimensional frequency-domain features for aircraft recognition from radar range profiles[J]. IEEE Trans.on Aerospace and Electronic Systems, 2010, 46 (4): 1880- 1892.
doi: 10.1109/TAES.2010.5595601 |
11 | REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: towards real-time target detection with region proposal networks[C]//Proc. of the Advances in Neural Information Processing Systems, 2015: 91-99. |
12 |
TANG T Y , ZHOU S L , DENG Z P , et al. Vehicle detection in aerial images based on region convolutional neural networks and hard negative example mining[J]. Sensors, 2017, 17 (2): 336.
doi: 10.3390/s17020336 |
13 |
DENG Z P , SUN H , ZHOU S , et al. Toward fast and accurate vehicle detection in aerial images using coupled region-based convolutional neural networks[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 10 (8): 3652- 3664.
doi: 10.1109/JSTARS.2017.2694890 |
14 | 孙嘉赤, 邹焕新, 邓志鹏, 等. 基于级联卷积神经网络的港口多方向舰船检测与分类[J]. 系统工程与电子技术, 2020, 42 (9): 1903- 1910. |
SUN J C , ZOU H X , DENG Z P , et al. Oriented inshore ship detection and classification based on cascade RCNN[J]. Systems Engineering and Electronics, 2020, 42 (9): 1903- 1910. | |
15 | REN S Q , HE K M , GIRSHICK R , et al. Faster R-CNN: towards real-time target detection with region proposal networks[J]. IEEE Trans.on Pattern Analysis & Machine Intelligence, 2017, 39 (6): 1137- 1149. |
16 | DING J, XUE N, LONG Y, et al. Learning RoI transformer for oriented target detection in aerial images[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2019: 2849-2858. |
17 | YU D H, ZHAO C, XU J F, et al. A method of aircraft detection using fully convolutional network[C]//Proc. of the International Conference on Computer Systems, Electronics and Control, 2017: 914-918. |
18 | WANG B, ZHOU Y, ZHANG H, et al. An aircraft target detection method based on regional convolutional neural network for remote sensing images[C]//Proc. of the IEEE 9th International Conference on Electronics Information and Emergency Communication, 2019: 474-478. |
19 |
LI Y , FU K , SUN H , et al. An aircraft detection framework based on reinforcement learning and convolutional neural networks in remote sensing images[J]. Remote Sensing, 2018, 10 (2): 243.
doi: 10.3390/rs10020243 |
20 |
ZHANG Y H , SUN H , ZUO J , et al. Aircraft type recognition in remote sensing images based on feature learning with conditional generative adversarial networks[J]. Remote Sensing, 2018, 10 (7): 1123.
doi: 10.3390/rs10071123 |
21 |
YANG J C , ZHU Y , JIANG B , et al. Aircraft detection in remote sensing images based on a deep residual network and super-vector coding[J]. Remote Sensing Letters, 2018, 9 (3): 228- 236.
doi: 10.1080/2150704X.2017.1415474 |
22 | LIN J X, LI X D, PAN H. Aircraft recognition in remote sensing images based on deep learning[C]//Proc. of the 33rd Youth Academic Annual Conference of Chinese Association of Automation, 2018: 895-899. |
23 |
ZUO J W , XU G L , FU K , et al. Aircraft type recognition based on segmentation with deep convolutional neural networks[J]. IEEE Geoscience and Remote Sensing Letters, 2018, 15 (2): 282- 286.
doi: 10.1109/LGRS.2017.2786232 |
24 | 俞汝劼, 杨贞, 熊惠霖. 基于深度卷积神经网络的航空器检测与识别[J]. 计算机应用, 2017, 37 (6): 1702- 1707. |
YU R J , YANG Z , XIONG H L . Aircraft detection and recognition based on deep convolutional neural network[J]. Journal of Computer Applications, 2017, 37 (6): 1702- 1707. | |
25 | CHEN K, PANG J, WANG J, et al. Hybrid task cascade for instance segmentation[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2019: 4974-4983. |
26 | XIA G S, BAI X, DING J, et al. DOTA: a large-scale dataset for target detection in aerial images[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 3974-3983. |
27 |
MA J Q , SHAO W , YE H , et al. Arbitrary-oriented scene text detection via rotation proposals[J]. IEEE Trans.on Multimedia, 2018, 20 (11): 3111- 3122.
doi: 10.1109/TMM.2018.2818020 |
28 | JIANG Y Y, ZHU X, WANG X, et al. R2CNN: rotational region cnn for orientation robust scene text detection[EB/OL]. [2020-11-30]. https://arxiv.org/abs/1706.09579v2 |
29 |
WANG X , SUN H , FU K , et al. Automatic ship detection in remote sensing images from google earth of complex scenes based on multiscale rotation dense feature pyramid networks[J]. Remote Sensing, 2018, 10 (1): 132- 140.
doi: 10.3390/rs10010132 |
30 | HE K, GKIOXARI G, DOLLÁR P, et al. Mask R-CNN[C]//Proc. of the IEEE International Conference on Computer Vision, 2017: 2961-2969. |
31 | CAI Z , VASCONCELOS N . Cascade R-CNN: high quality target detection and instance segmentation[J]. IEEE Trans.on Pattern Analysis and Machine Intelligence, 2019, |
32 | CAI Z, VASCONCELOS N. Cascade R-CNN: delving into high quality target detection[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 6154-6162. |
33 | LIN T Y, DOLLÁR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 2117-2125. |
34 | 安静. 基于数学形态学的图像增强算法及其应用[D]. 兰州: 西北师范大学, 2016. |
AN J. Image enhancement algorithm based on mathematical morphology and its application[D]. Lanzhou: Northwest Normal University, 2015. | |
35 |
OTSU N . A threshold selection method from gray-level histograms[J]. IEEE Trans.on Systems, Man, and Cybernetics, 1979, 9 (1): 62- 66.
doi: 10.1109/TSMC.1979.4310076 |
[1] | Runlin LI, Huanxin ZOU, Xu CAO, Fei CHENG, Shitian HE, Meilin LI. Multi-direction remote sensing ship detection based on center point and semantic information [J]. Systems Engineering and Electronics, 2022, 44(6): 1772-1781. |
[2] | Ping HAN, Bo ZHOU, Bin LU, Binbin HAN. Aircraft target detection of PolSAR based on the fusion of environmental feature and scattering characteristics [J]. Systems Engineering and Electronics, 2020, 42(10): 2231-2238. |
[3] | YANG Qingqing, FAN Guihua. Battle damage assessment of buildings based on improved fuzzy comprehensive evaluation method [J]. Systems Engineering and Electronics, 2018, 40(9): 2026-2031. |
[4] | LUO Chang, WANG Jie, WANG Shiqiang, SHI Tong, REN Weihua. General deep transfer features based high resolution remote scene classification [J]. Systems Engineering and Electronics, 2018, 40(3): 682-691. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||