Systems Engineering and Electronics ›› 2021, Vol. 43 ›› Issue (5): 1316-1325.doi: 10.12305/j.issn.1001-506X.2021.05.20
• Guidance, Navigation and Control • Previous Articles Next Articles
Yanli DU1,*(), Wu LIU1(
), Mingming TANG1(
), Yuhui WANG2(
)
Received:
2020-07-14
Online:
2021-05-01
Published:
2021-04-27
Contact:
Yanli DU
E-mail:duyanli@nuaa.edu.cn;liuwu@nuaa.edu.cn;1906423583@qq.com;wangyh@nuaa.edu.cn
CLC Number:
Yanli DU, Wu LIU, Mingming TANG, Yuhui WANG. Robust predictor-corrector guidance with multiple constraints for reusable launch vehicles[J]. Systems Engineering and Electronics, 2021, 43(5): 1316-1325.
1 |
SIVAN K , PANDIAN S . An overview of reusable launch vehicle technology demonstrator[J]. Current Science, 2018, 114 (1): 38- 47.
doi: 10.18520/cs/v114/i01/38-47 |
2 | NAIR P G, JOSHI A. Effect of maximum angle of attack on path constraints and flyability for winged re-entry vehicles[C]//Proc. of the AIAA SciTech Forum, 2019: 0263. |
3 |
LU P . Entry guidance: a unified method[J]. Journal of Guidance, Control, and Dynamics, 2014, 37 (3): 713- 728.
doi: 10.2514/1.62605 |
4 |
XUE S B , LU P . Constrained predictor-corrector entry guidance[J]. Journal of Guidance, Control, and Dynamics, 2010, 33 (4): 1273- 1281.
doi: 10.2514/1.49557 |
5 | SAGLIANO M, MOOIJ E. Optimal drag-energy entry guidance via pseudo spectral convex optimization[C]//Proc. of the AIAA Guidance, Navigation, and Control Conference, 2018: 1315. |
6 | WEBB K, LU P. Entry guidance by onboard trajectory planning and tracking[C]//Proc. of the AIAA Atmospheric Flight Mechamics Conference, 2016. |
7 |
HE R Z , LIU L H , TANG G J , et al. Rapid generation of entry trajectory with multiple no-fly zone constraints[J]. Advances in Space Research, 2017, 60, 1430- 1442.
doi: 10.1016/j.asr.2017.06.046 |
8 |
ZHAO D J , SONG Z Y . Reentry trajectory optimization with waypoint and no-fly zone constraints using multi-phase convex programming[J]. Acta Astronautica, 2017, 137, 60- 69.
doi: 10.1016/j.actaastro.2017.04.013 |
9 |
LU Q , ZHOU J . Re-entry guidance for hypersonic vehicle satisfying no-fly zone constraints[J]. Transactions of the Institute of Measurement and Control, 2018, 40 (13): 3899- 3908.
doi: 10.1177/0142331217735050 |
10 |
JORRIS T R , COBB R G . Three-dimensional trajectory optimization satisfying waypoint and no-fly zone constraints[J]. Journal of Guidance, Control, and Dynamics, 2009, 32 (2): 551- 572.
doi: 10.2514/1.37030 |
11 |
ZHANG H P , WANG H L , LI N , et al. Time-optimal memetic whale optimization algorithm for hypersonic vehicle reentry trajectory optimization with no-fly zones[J]. Neural Computing and Applications, 2018, 32, 2735- 2749.
doi: 10.1007/s00521-018-3764-y |
12 |
YONG E M , QIAN W Q , HE K F . An adaptive predictor corrector reentry guidance based on self-definition waypoints[J]. Aerospace Science and Technology, 2014, 39, 211- 221.
doi: 10.1016/j.ast.2014.08.004 |
13 |
LI Z H , YANG X J , SUN X D , et al. Improved artificial potential field based lateral entry guidance for waypoints passage and no-fly zones avoidance[J]. Aerospace Science and Techno-logy, 2019, 86, 119- 131.
doi: 10.1016/j.ast.2019.01.015 |
14 | LIN H B, DU Y L, MOOIJ E, et al. Improved predictor-corrector guidance with hybrid lateral logic for no-fly zone avoidance[C]//Proc. of the International Conference on Control, Automation and Information Sciences, 2019. |
15 |
GAO Y , CAI G B , YANG X G , et al. Improved tentacle-based guidance for reentry gliding hypersonic vehicle with no-fly zone constraint[J]. IEEE Access, 2019, 7, 119246- 119258.
doi: 10.1109/ACCESS.2019.2936974 |
16 | LIANG Z X , REN Z . Tentacle-based guidance for entry flight with no-fly zone constraint[J]. Journal of Guidance, Control, and Dynamic, 2018, 41 (4): 991- 1000. |
17 |
WANG T , ZHANG H B , TANG G J . Predictor-corrector entry guidance with waypoint and no-fly zone constraints[J]. Acta Astronautica, 2017, 138, 10- 18.
doi: 10.1016/j.actaastro.2017.05.009 |
18 |
LIANG Z X , LI Q D , REN Z . Waypoint constrained guidance for entry vehicles[J]. Aerospace Science and Technology, 2016, 52, 52- 61.
doi: 10.1016/j.ast.2016.02.023 |
19 | LIANG Z X , LONG J T , ZHU S Y , et al. Entry guidance with terminal approach angle constraint[J]. Aerospace Science and Technology, 2020, 102, 1058- 1076. |
20 |
LI S , JIANG X Q . RBF neural network based second-order sliding mode guidance for Mars entry uncertainties[J]. Aerospace Science and Technology, 2015, 43, 226- 235.
doi: 10.1016/j.ast.2015.03.006 |
21 | 景亮, 张忠阳, 崔乃刚, 等. 固定时间收敛扰动观测终端滑模制导律设计[J]. 系统工程与电子技术, 2019, 41 (8): 1820- 1826. |
JING L , ZHANG Z Y , CUI N G , et al. Fixed-time disturbance observer based terminal sliding mode guidance law[J]. Systems Engineering and Electronics, 2019, 41 (8): 1820- 1826. | |
22 |
XU J W , QIAO J Z , GUO L , et al. Enhanced predictor-corrector mars entry guidance approach with atmospheric uncertainties[J]. IET Control Theory and Applications, 2019, 13 (11): 1612- 1618.
doi: 10.1049/iet-cta.2018.5782 |
23 | XI Y H , PENG H , MO H . Parameter estimation of RBF-AR model based on the EM-EKF algorithm[J]. Acta Automatica Sinica, 2017, 43 (9): 1636- 1643. |
24 |
LU P , BRUNNER C W , STACHOWIAK S J , et al. Verification of a fully numerical entry guidance algorithm[J]. Journal of Guidance, Control, and Dynamics, 2017, 40 (2): 230- 248.
doi: 10.2514/1.G000327 |
25 | 江振宇, 孙乐园, 王晋璘, 等. 环境参数在线辨识及其在滑翔段制导中的应用[J]. 国防科技大学学报, 2018, 40 (2): 48- 54. |
JIANG Z Y , SUN L Y , WANG J L , et al. Environmental parameter online identification and its application in gliding guidance[J]. Journal of National University of Defense Technology, 2018, 40 (2): 48- 54. | |
26 | MOOIJ E. The Horus-2B reference vehicle, Memorandum M-692[R]. Delft: Delft University of Technology, 1995. |
27 | 张鹏, 都延丽, 项凯. 高升阻比RLV的约束预测校正再入制导[J]. 飞行力学, 2018, 36 (3): 70- 74. |
ZHANG P , DU Y L , XIANG K . Constrained predictive-corrector reentry guidance for high lift-to-drag RLV[J]. Flight Dynamics, 2018, 36 (3): 70- 74. | |
28 | 朱凯, 齐乃明, 秦昌茂. 动态航向角误差走廊的侧向制导策略[J]. 哈尔滨工业大学学报, 2011, 43 (1): 31- 35. |
ZHU K , QI N M , QIN C M . A lateral guidance method with dynamic heading error corridor[J]. Journal of Harbin Institute of Technology, 2011, 43 (1): 31- 35. | |
29 | MOOIJ E, MEASE K D, BENITO J. Robust re-entry guidance and control system design and analysis[C]//Proc. of the AIAA Guidance, Navigation, and Control Conference and Exhibit, 2007: 6779. |
30 | SAUNDERS B R. Optimal trajectory design under uncertainty[D]. Cambridge: Massachusetts Institute of Technology, 2012. |
[1] | Shang JIANG, Bo WEI, Weige LIANG, Dongyan SUN, Jinjun LI, Ye MA. Integrated guidance and control design method with multiple constraints and backlash [J]. Systems Engineering and Electronics, 2022, 44(4): 1318-1328. |
[2] | Shiyan SUN, Shang JIANG, Fuqing TIAN, Weige LIANG. Distributed adaptive cooperative guidance law of multiple projectiles with multiple constraints [J]. Systems Engineering and Electronics, 2021, 43(1): 181-190. |
[3] | SUN Guoxin, XIA Qunli, ZHANG Daochi, XU Wenbo. Piecewise guidance strategy of auto landing for reusable launch vehicle [J]. Systems Engineering and Electronics, 2019, 41(4): 856-862. |
[4] | MAO Boyuan, LI Junlong, ZHANG Rui. Midcourse guidance law with multiple constraints considering missile’s dynamics of autopilot [J]. Systems Engineering and Electronics, 2019, 41(2): 382-388. |
[5] | MENG Ke-zi, ZHOU Di. Design of optimal midcourse guidance law with multiple constraints [J]. Systems Engineering and Electronics, 2016, 38(1): 116-122. |
[6] | CHEN Zhe, TANG Shengjing, GUO Jie. Energy management based guidance of solid rocket with multi constraints [J]. Systems Engineering and Electronics, 2014, 36(12): 2484-2489. |
[7] | HE Cheng-long, CHEN Xin, YANG Yi-dong. Mixed programming control allocation for reusable launch vehicles using dynamic inverse calculating [J]. Journal of Systems Engineering and Electronics, 2010, 32(9): 1973-1976. |
[8] | ZHANG Jun, HUANG Yi-ming, Yang Yi-dong. Research on 3-D guidance trajectory propagation of terminal area energy management for RLVs [J]. Journal of Systems Engineering and Electronics, 2010, 32(8): 1727-1731. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||