Systems Engineering and Electronics ›› 2021, Vol. 43 ›› Issue (4): 937-943.doi: 10.12305/j.issn.1001-506X.2021.04.10
• Sensors and Signal Processing • Previous Articles Next Articles
Received:
2020-07-27
Online:
2021-03-25
Published:
2021-03-31
Contact:
Dong CHEN
E-mail:preston_chen@foxmail.com;juyanwei@126.com
CLC Number:
Dong CHEN, Yanwei JU. Ship detection in SAR image based on improved YOLOv3[J]. Systems Engineering and Electronics, 2021, 43(4): 937-943.
Table 2
Evaluation index of SSDD detection results %"
模型 | Pd | PMA | PLA | Precision | mAP | 大小/MB |
Darknet53 | 95.51 | 4.49 | 11.15 | 88.85 | 93.21 | 234 |
Shufflenetv2 | 96.25 | 3.75 | 10.14 | 89.86 | 92.84 | 27 |
ResNet50 | 97.00 | 3.00 | 12.79 | 87.21 | 95.02 | 172 |
ResNet50-d | 96.63 | 3.37 | 10.73 | 89.27 | 95.23 | 172 |
ResNet50-d-DCN | 97.75 | 2.25 | 10.00 | 90.00 | 96.64 | 173 |
1 | LI W, ZOU B, XIN Y, et al. An improved CFAR scheme for man-made target detection in high resolution SAR images[C]//Proc. of the IEEE International Geoscience and Remote Sensing Symposium, 2018: 2829-2832. |
2 |
ZHU J , QIU X , PAN Z , et al. Projection shape template-based ship target recognition in TerraSAR-X images[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14 (2): 222- 226.
doi: 10.1109/LGRS.2016.2635699 |
3 | 杨国铮, 禹晶, 肖创柏, 等. 基于形态字典学习的复杂背景SAR图像舰船尾迹检测[J]. 自动化学报, 2017, 43 (10): 1713- 1725. |
YANG G Z , YU J , XIAO C B , et al. Ship wake detection in sar images with complex background using morphological dictionary learning[J]. Acta Automatica Sinica, 2017, 43 (10): 1713- 1725. | |
4 | GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proc. of the Computer Vision and Pattern Recognition, 2014: 580-587. |
5 | GIRSHICK R. Fast R-CNN[C]//Proc. of the International Conference on Computer Vision, 2015: 1440-1448. |
6 | REN S , HE K , GIRSHICK R , et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Trans.on Pattern Analysis & Machine Intelligence, 2017, 39 (6): 1137- 1149. |
7 | LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot MultiBox detector[C]//Proc. of the European Conference on Computer Vision, 2016: 21-37. |
8 | LI Z , ZHOU F . FSSD: feature fusion single shot multibox detector[J]. Computer Vision and Pattern Recognition, 2018, 36 (7): 356- 366. |
9 | FU C, LIU W, RANGA A, et al. DSSD: deconvolutional single shot detector[EB/OL]. [2020-07-16]. http://arxiv.org/abs/1701.06659. |
10 | REDMON J, DIVVALA S K, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//Proc. of the Computer Vision and Pattern Recognition, 2016: 779-788. |
11 | REDMON J, FARHADI A. YOLO9000: better, faster, stronger[C]//Proc. of the Computer Vision and Pattern Recognition, 2017: 6517-6525. |
12 | REDMON J, FARHADI A. YOLOv3: an incremental improvement[EB/OL]. [2020-07-16]. http://arxiv.org/abs/1804.02767. |
13 | HUANG L C, YANG Y, DENG Y F, et al. DenseBox: unifying landmark localization with end to end object detection[EB/OL]. [2020-07-16]. http://export.arxiv.org/abs/1509.04874. |
14 | TIAN Z, SHEN C H, CHEN H, et al. FCOS: fully convolutional one-stage object detection[EB/OL]. [2020-07-16]. http://arxiv.org/abs/1904.01355, . |
15 | LAW H, DENG J. CornerNet: detecting objects as paired keypoints[C]//Proc. of the European Conference on Computer Vision, 2018: 765-781. |
16 | 李健伟, 曲长文, 彭书娟, 等. 基于卷积神经网络的SAR图像舰船目标检测[J]. 系统工程与电子技术, 2018, 40 (9): 1953- 1959. |
LI J W , QU C W , PENG S J , et al. Ship detection in SAR images based on convolutional neural network[J]. Systems Engineering and Electronics, 2018, 40 (9): 1953- 1959. | |
17 | 苏娟, 杨龙, 黄华, 等. 用于SAR图像小目标舰船检测的改进SSD算法[J]. 系统工程与电子技术, 2020, 42 (5): 1026- 1034. |
SU J , YANG L , HUANG H , et al. Improved SSD algorithm for small-scale SAR ship detection[J]. Systems Engineering and Electronics, 2020, 42 (5): 1026- 1034. | |
18 | 张晓玲, 张天文, 师君, 等. 基于深度分离卷积神经网络的高速高精度SAR舰船检测[J]. 雷达学报, 2019, 8 (6): 841- 851. |
ZHANG X L , ZHANG T W , SHI J , et al. High-speed and high-accurate SAR ship detection based on a depthwise separable convolution neural network[J]. Journal of Radars, 2019, 8 (6): 841- 851. | |
19 | LIN T, DOLLAR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//Proc. of the Computer Vision and Pattern Recognition, 2017: 936-944. |
20 | HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proc. of the Computer Vision and Pattern Recognition, 2016: 770-778. |
21 | HE T, ZHANG Z, ZHANG H, et al. Bag of tricks for image classification with convolutional neural networks[C]//Proc. of the Computer Vision and Pattern Recognition, 2019: 558-567. |
22 | DAI J, QI H, XIONG Y, et al. Deformable convolutional networks[C]//Proc. of the International Conference on Computer Vision, 2017: 764-773. |
23 | ZHU X, HU H, LIN S, et al. Deformable ConvNets V2: more deformable, better results[C]//Proc. of the Computer Vision and Pattern Recognition, 2019: 9308-9316. |
24 | MA N, ZHANG X, ZHENG H, et al. ShuffleNet V2: practical guidelines for efficient CNN architecture design[C]//Proc. of the European Conference on Computer Vision, 2018: 122-138. |
25 | LI J, QU C, SHAO J. Ship detection in SAR images based on an improved faster R-CNN[C]//Proc. of the IEEE SAR in Big Data Era: Models, Methods and Applications, 2017: 1-6. |
26 |
WANG Y , WANG C , ZHANG H , et al. A SAR dataset of ship detection for deep learning under complex backgrounds[J]. Remote Sensing, 2019, 11 (7): 765- 769.
doi: 10.3390/rs11070765 |
27 | MCMAHAN B, STREETER M J. Delay-tolerant algorithms for asynchronous distributed online learning[C]//Proc. of the Neural Information Processing Systems, 2014: 2915-2923. |
28 | DUCHI J , HAZAN E , SINGER Y . Adaptive subgradient methods for online learning and stochastic optimization[J]. Journal of Machine Learning Research, 2011, 12 (7): 257- 269. |
29 | TAN C, SUN F, KONG T, et al. A survey on deep transfer learning[C]//Proc. of the International Conference on Artificial Neural Networks, 2018: 270-279. |
[1] | Shuang SONG, Yue ZHANG, Linna ZHANG, Yigang CEN, Yidong LI. Lightweight target detection algorithm based on deep learning [J]. Systems Engineering and Electronics, 2022, 44(9): 2716-2725. |
[2] | Tian MIAO, Hongcheng ZENG, He WANG, Jie CHEN. A fast extraction method of flood areas based on iterative threshold segmentation using spaceborne SAR data [J]. Systems Engineering and Electronics, 2022, 44(9): 2760-2768. |
[3] | Tao ZHANG, Xiaogang YANG, Ruitao LU, Xueli XIE, Chuang LIU. Key-point based method for ship detection in remote sensing images [J]. Systems Engineering and Electronics, 2022, 44(8): 2437-2447. |
[4] | Caiyun WANG, Yida WU, Jianing WANG, Lu MA, Huanyue ZHAO. SAR image target recognition based on combinatorial optimization convolutional neural network [J]. Systems Engineering and Electronics, 2022, 44(8): 2483-2487. |
[5] | Dongning FU, Guisheng LIAO, Yan HUANG, Bangjie ZHANG, Xing WANG. Time-varying narrow-band interference suppression algorithm for SAR based on graph Laplacian embedding [J]. Systems Engineering and Electronics, 2022, 44(6): 1846-1853. |
[6] | Minghui GAI, Su ZHANG, Weitian SUN, Yude NI, Lei YANG. Structural-feature enhancement of SAR targets based on complex value compatible total variation [J]. Systems Engineering and Electronics, 2022, 44(6): 1862-1872. |
[7] | Juan WEI, Huangwei YANG, Fangli NING. Acoustic scene classification based on joint optimization of NMF and CNN [J]. Systems Engineering and Electronics, 2022, 44(5): 1433-1438. |
[8] | Xiaofeng ZHAO, Yebin XU, Fei WU, Jiahui NIU, Wei CAI, Zhili ZHANG. Ground infrared target detection method based on global sensing mechanism [J]. Systems Engineering and Electronics, 2022, 44(5): 1461-1467. |
[9] | Penghui JI, Dahai DAI, Shiqi XING, Dejun FENG. Dense false moving targets generation method [J]. Systems Engineering and Electronics, 2022, 44(5): 1502-1511. |
[10] | Dong CHEN, Yanwei JU. Ship object detection SAR images based on semantic segmentation [J]. Systems Engineering and Electronics, 2022, 44(4): 1195-1201. |
[11] | Jingming SUN, Shengkang YU, Jun SUN. Pose sensitivity analysis of HRRP recognition based on deep learning [J]. Systems Engineering and Electronics, 2022, 44(3): 802-807. |
[12] | Lei YANG, Su ZHANG, Minghui GAI, Cheng FANG. High-resolution SAR imagery with enhancement of directional structure feature [J]. Systems Engineering and Electronics, 2022, 44(3): 808-818. |
[13] | Hengyan LIU, Limin ZHANG, Wenjun YAN, Zhaogen ZHONG, Qing LING, Xiaojun LIANG. LDPC decoding based on WBP-CNN algorithm [J]. Systems Engineering and Electronics, 2022, 44(3): 1030-1035. |
[14] | Kai SHAO, Miaomiao ZHU, Guangyu WANG. Modulation recognition method based on generative adversarial andconvolutional neural network [J]. Systems Engineering and Electronics, 2022, 44(3): 1036-1043. |
[15] | Xi ZHANG, Zhengmeng JIN, Yaqin JIANG. Total variation algorithm with depth image priors for image colorization [J]. Systems Engineering and Electronics, 2022, 44(2): 385-393. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||