

系统工程与电子技术 ›› 2023, Vol. 45 ›› Issue (2): 538-545.doi: 10.12305/j.issn.1001-506X.2023.02.26
• 制导、导航与控制 • 上一篇
赵蒙1,2, 端军红1,*, 王明宇1, 殷双斌1, 鲁娜1
收稿日期:2021-11-16
出版日期:2023-01-13
发布日期:2023-02-04
通讯作者:
端军红
作者简介:赵蒙(1989—), 男, 博士研究生, 主要研究方向为反导作战空间理论研究基金资助:Meng ZHAO1,2, Junhong DUAN1,*, Mingyu WANG1, Shuangbin YIN1, Na LU1
Received:2021-11-16
Online:2023-01-13
Published:2023-02-04
Contact:
Junhong DUAN
摘要:
针对大气层外拦截器在中制导结束后还需要长时间无控飞行的情况, 基于零控脱靶量思想采用最优控制理论, 对拦截器和目标的相对运动关系进行了理论推导, 以脱靶量和中制导加速度为性能指标, 设计了一种拦截器发动机固定推进时间的中制导策略, 研究了拦截器制导精度与零控脱靶量预测精度的关系, 提出了调节拦截器机动过载大小的实现途径。仿真结果表明, 设计的中制导律精度高、可靠性好、形式简单, 在脱靶量计算得足够精确时, 中制导结束后的零控脱靶量可控制在百米量级内, 为拦截器以动能碰撞方式拦截目标创造了优良的末制导条件。
中图分类号:
赵蒙, 端军红, 王明宇, 殷双斌, 鲁娜. 基于零控脱靶量的大气层外拦截中制导方法研究[J]. 系统工程与电子技术, 2023, 45(2): 538-545.
Meng ZHAO, Junhong DUAN, Mingyu WANG, Shuangbin YIN, Na LU. Research on midcourse guidance method of extra-atmospheric interception based on zero effort miss[J]. Systems Engineering and Electronics, 2023, 45(2): 538-545.
| 1 |
LU P . Theory of fractional-polynomial powered descent guidance[J]. Journal of Guidance, Control, and Dynamics, 2020, 43 (3): 398- 409.
doi: 10.2514/1.G004556 |
| 2 | WANG Z K , FU W X , FANG Y W , et al. Cooperative guidance law against highly maneuvering target with dynamic surrounding attack[J]. International Journal of Aerospace Engineering, 2021, 2021, 6623561. |
| 3 |
XU H T , FOSSEN T I , SOARES C G . Uniformly semiglobally exponential stability of vector field guidance law and autopilot for path-following[J]. European Journal of Control, 2020, 53, 88- 97.
doi: 10.1016/j.ejcon.2019.09.007 |
| 4 |
KUMAR S R , SHIMA T . Cooperative nonlinear guidance stra-tegies for aircraft defense[J]. Journal of Guidance, Control and Dynamics, 2017, 40 (1): 124- 138.
doi: 10.2514/1.G000659 |
| 5 |
HUANG J S , ZHANG H B , TANG G J , et al. Extended diffe-rential geometric guidance law for intercepting maneuvering targets[J]. Journal of Systems Engineering and Electronics, 2018, 29 (5): 1046- 1057.
doi: 10.21629/JSEE.2018.05.15 |
| 6 | YANG F , ZHANG K Q , YU L . Adaptive super-twisting algorithm-based nonsingular terminal sliding mode guidance law[J]. Journal of Control Science and Engineering, 2020, 2020, 1058347. |
| 7 |
WANG C Y , DONG W , WANG J N , et al. Guidance law design with fixed-time convergent error dynamics[J]. Journal of Guidance, Control, and Dynamics, 2021, 44 (7): 1389- 1398.
doi: 10.2514/1.G005833 |
| 8 |
TIAN J Y , BAI X B , YANG H B , et al. Time-varying asymmetric barrier Lyapunov function-based impact angle control guidance law with field-of-view constraint[J]. IEEE Access, 2020, 8, 185346- 185359.
doi: 10.1109/ACCESS.2020.3030158 |
| 9 |
WEISS M , SHIMA T . Optimal linear-quadratic missile guidance laws with penalty on command variability[J]. Journal of Gui-dance, Control, and Dynamics, 2015, 38 (2): 226- 237.
doi: 10.2514/1.G000738 |
| 10 | ZHANG T , LI J , WANG H J , et al. Attitude controller design with state constraints for kinetic kill vehicle based on barrier Lyapunov function[J]. Mathematical Problems in Engineering, 2018, 2018, 4397548. |
| 11 |
ZHANG T , LI J , LI W M , et al. Prescribed performance neural control to guarantee tracking quality for near space kinetic kill vehicle[J]. Journal of Systems Engineering and Electro-nics, 2019, 30 (3): 573- 586.
doi: 10.21629/JSEE.2019.03.15 |
| 12 | PEI P , WANG J . Near-optimal guidance with impact angle and velocity constraints using sequential convex programming[J]. Mathematical Problems in Engineering, 2019, 2019, 2065730. |
| 13 | 郭建国, 韩拓, 周军, 等. 大气层外动能拦截器末制导律与能量优化方法[J]. 系统工程与电子技术, 2017, 39 (2): 376- 382. |
| GUO J G , HAN T , ZHOU J , et al. Terminal guidance law for exoatmospheric kill vehicle with energy optimization method[J]. Systems Engineering and Electronics, 2017, 39 (2): 376- 382. | |
| 14 |
PAL A , PANCHOLY A , DWIVEDI P N . Application of sub-optimal MPSC guidance for trajectory optimization of various aerospace vehicles with terminal angle constraint[J]. IFAC-PapersOnLine, 2018, 51 (1): 58- 63.
doi: 10.1016/j.ifacol.2018.05.011 |
| 15 | CHO N , KIM Y , SHIN H S . Generalized formulation of linear nonquadratic weighted optimal error shaping guidance laws[J]. Journal of Guidance, Control, and Dynamics, 2020, 43 (6): 1- 11. |
| 16 |
NO T S , COCHRAN J E , KIM E G . Bank-to-turn guidance law using Lyapunov function and nonzero effort miss[J]. Journal of Guidance, Control, and Dynamics, 2001, 24 (2): 255- 260.
doi: 10.2514/2.4736 |
| 17 | LAM V C . Acceleration compensated zero effort miss guidance law[J]. Journal of Guidance, Control, and Dynamics, 2011, 30 (4): 1159- 1163. |
| 18 |
YAN X D , SHI L . Robust intercept guidance law with predesigned zero-effort miss distance convergence for capturing maneuvering targets[J]. Journal of the Franklin Institute, 2020, 357 (2): 1118- 1136.
doi: 10.1016/j.jfranklin.2019.10.021 |
| 19 |
SHIMA T , IDAN M , GOLAN M O . Sliding-mode control for integrated missile autopilot guidance[J]. Journal of Guidance, Control, and Dynamics, 2006, 29 (2): 250- 260.
doi: 10.2514/1.14951 |
| 20 |
NEWMAN B . Strategic intercept midcourse guidance using modified zero effort miss steering[J]. Journal of Guidance, Control, and Dynamics, 1996, 19 (1): 107- 112.
doi: 10.2514/3.21586 |
| 21 | 崔彦凯, 梁晓庚, 王斐, 等. 弹道导弹助推段拦截最优制导律设计[J]. 飞行力学, 2011, 29 (1): 59- 62. |
| CUI Y K , LIANG X G , WANG F , et al. Design of optimal guidance law for interception ballistic miss during the boost phase[J]. Flight Dynamics, 2011, 29 (1): 59- 62. | |
| 22 |
李运迁, 齐乃明. 基于零控脱靶量的大气层内拦截弹制导律[J]. 宇航学报, 2010, 31 (7): 1768- 1774.
doi: 10.3873/j.issn.1000-1328.2010.07.011 |
|
LI Y Q , QI N M . A zero-effort miss distance-based guidance law for endoatmoshperic interceptor[J]. Journal of Astronautics, 2010, 31 (7): 1768- 1774.
doi: 10.3873/j.issn.1000-1328.2010.07.011 |
|
| 23 | 张浩, 张奕群, 张鹏飞. 拦截主动防御目标的微分对策制导律[J]. 系统工程与电子技术, 2021, 43 (5): 1335- 1345. |
| ZHANG H , ZHANG Y Q , ZHANG P F . Differential game guidance law for intercepting the active defense targets[J]. Systems Engineering and Electronics, 2021, 43 (5): 1335- 1345. | |
| 24 |
陈峰, 肖业伦, 陈万春. 基于零控脱靶量的大气层外超远程拦截制导[J]. 航空学报, 2009, 30 (9): 1583- 1589.
doi: 10.3321/j.issn:1000-6893.2009.09.005 |
|
CHEN F , XIAO Y L , CHEN W C . Guidance based on zero effort miss for super range exoatmospheric intercept[J]. Acta Aeronautic et Astronautica Sinica, 2009, 30 (9): 1583- 1589.
doi: 10.3321/j.issn:1000-6893.2009.09.005 |
|
| 25 | 陆诚, 崔朗福, 张庆振, 等. 基于线性重力差模型的拦截弹中制导技术[J]. 飞控与探测, 2020, 3 (3): 49- 56. |
| LU C , CUI L F , ZHANG Q Z , et al. Interceptor midcourse gui-dance technology based on linear gravity difference model[J]. Flight Control & Detection, 2020, 3 (3): 49- 56. | |
| 26 | 李玖阳, 胡敏, 王许煜, 等. 基于ALPSO算法的低轨卫星小推力离轨最优控制方法[J]. 系统工程与电子技术, 2021, 43 (1): 199- 207. |
| LI J Y , HU M , WANG X Y , et al. Optimal control method for low thrust deorbit of low earth orbit satellite based on ALPSO algorithm[J]. Systems Engineering and Electronics, 2021, 43 (1): 199- 207. | |
| 27 | HU W J , WANG H , ZHOU J . Design of mid-course guidance law considering J2 perturbation for long range fuel exhaustion shutoff interceptor[J]. Journal of Astronautics, 2017, 38 (7): 694- 703. |
| 28 | SHSFERMAN V , SHIMA T . Linear quadratic laws for imposing a terminal intercept angle[J]. Journal of Guidance, Control, and Dynamics, 2008, 31 (5): 1400- 1412. |
| 29 | ZHANG H Q , TANG S J , GUO J . Cooperative near-space interceptor mid-course guidance law with terminal handover constraints[J]. Proceedings of the Institution of Mechanical Engineers, 2019, 233 (6): 1960- 1976. |
| 30 | MD A , CHOU H C , BOWLES J V . Near-optimal operation of dual-fuel launch vehicles[J]. Journal of Guidance, Control, and Dynamics, 1996, 19 (5): 1180- 1182. |
| 31 | LI Z , XIA Y , SU C Y , et al. Missile guidance law based on robust model predictive control using neural-network optimization[J]. IEEE Trans.on Neural Networks and Learning Systems, 2017, 26 (8): 1803- 1809. |
| [1] | 陆浩然, 郑伟, 常晓华. 基于鲁棒精确微分器的分数阶滑模制导律设计[J]. 系统工程与电子技术, 2023, 45(1): 175-183. |
| [2] | 周梦平, 孟秀云, 刘俊辉. 大落角机动目标逆轨拦截最优滑模制导律设计[J]. 系统工程与电子技术, 2022, 44(9): 2886-2893. |
| [3] | 唐骁, 叶继坤, 李旭. 三维非线性预设性能制导律设计[J]. 系统工程与电子技术, 2022, 44(2): 619-627. |
| [4] | 张浩, 张奕群, 张鹏飞. 拦截主动防御目标的微分对策制导律[J]. 系统工程与电子技术, 2021, 43(5): 1335-1345. |
| [5] | 李军, 廖宇新, 李珺. 三维自适应有限时间超螺旋滑模制导律[J]. 系统工程与电子技术, 2021, 43(3): 779-788. |
| [6] | 李万礼, 李炯, 雷虎民, 骆长鑫, 李世杰. 基于滑模变结构制导律的捕获区分析[J]. 系统工程与电子技术, 2021, 43(11): 3321-3329. |
| [7] | 陈文钰, 邵雷, 雷虎民, 骆长鑫, 张涛. 基于二体理论的远程拦截中制导修正[J]. 系统工程与电子技术, 2020, 42(8): 1804-1811. |
| [8] | 张秦浩, 敖百强, 张秦雪. Q-learning强化学习制导律[J]. 系统工程与电子技术, 2020, 42(2): 414-419. |
| [9] | 赵春明, 姚跃民, 金文, 宋蔚阳, 方海红. 全捷联被动雷达末制导系统设计[J]. 系统工程与电子技术, 2020, 42(11): 2607-2613. |
| [10] | 贺敏, 王晓芳, 林海. 信息单向传输带拦截角约束的协同拦截制导律[J]. 系统工程与电子技术, 2019, 41(8): 1827-1834. |
| [11] | 朱强, 邵之江. 基于神经网络的实时滚动追逃博弈导弹制导律[J]. 系统工程与电子技术, 2019, 41(7): 1597-1605. |
| [12] | 张文杰, 鲁天宇, 夏群利. 基于扩张状态观测器的反预警滑模制导律[J]. 系统工程与电子技术, 2019, 41(5): 1087-1093. |
| [13] | 赵琳, 周俊峰, 刘源, 郝勇. 三维空间“追逃防”三方微分对策方法[J]. 系统工程与电子技术, 2019, 41(2): 322-335. |
| [14] | 毛柏源, 李君龙, 张锐. 考虑自动驾驶仪动态特性的多约束中制导律[J]. 系统工程与电子技术, 2019, 41(2): 382-388. |
| [15] | 姜尚, 田福庆, 孙世岩, 梁伟阁, 尤栋. 考虑自动驾驶仪动态特性与攻击角约束的模糊自适应动态面末制导律[J]. 系统工程与电子技术, 2019, 41(2): 389-401. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||